Catalysis Today ( IF 5.2 ) Pub Date : 2020-12-07 , DOI: 10.1016/j.cattod.2020.11.019 Haridas B. Parse , Indrajit Patil , Anita Swami , Bhalchandra Kakade
We report an in situ synthesis of titanium nitride (Ti3N2Tx) from its carbide (Ti3C2Tx) and concurrently composite formation with N-doped carbon nanotubes (N-CNTs). Unlike conventional wet-chemical method, a simple approach has been adopted for the synthesis of Ti3N2Tx and it’s composite with N-CNTs. The crystallographic study shows an obvious phase transformation from carbide to nitride. Importantly, an optimized composite electrocatalyst (Ti3N2@NCNT(20)-800) exhibits promising oxygen reduction ability under alkaline conditions with positive onset potential (Eonset) of 1.0 V versus reversible hydrogen electrode (RHE) and current density (JL) of 5.3 mA/cm2. The remarkable oxygen reduction reaction (ORR) properties mainly originate from the fascinating carbon-nitrogen exchange (Ti3C2Tx into Ti3N2Tx) in the MXene lattice along with N-doping in CNTs, which eventually lead to the formation of their composite and generating enough active centres for dioxygen adsorption followed by electroreduction. Moreover, the rotating ring disk electrode (RRDE) studies were carried to particularly detect peroxide (HO2−) formation and further to get an insight into ORR kinetics. Additionally, a robust performance of Ti3N2@NCNT(20)-800 electrocatalyst over Pt/C has been observed during the electrochemical cycling stability up to 10,000 (10 k) durable cycles. Thus, we believe that the present methodology provides an adept approach to convert carbide into nitride and further to extend it to synthesize the MXene based composite materials for energy conversion applications.
中文翻译:
一种将碳化钛转化为氮化钛及其与N掺杂碳纳米管复合的有效方法,可实现有效的氧电还原动力学
我们在氮化钛(Ti的原位合成报告一个3 Ñ 2 Ť X)从其碳化物(TI 3 c ^ 2 Ť X),并同时复合材料的形成有N型掺杂的碳纳米管(N-CNT)的。与传统的湿化学方法不同,已采用一种简单的方法来合成Ti 3 N 2 T x及其与N-CNT的复合物。晶体学研究表明从碳化物到氮化物有明显的相变。重要的是,优化的复合电催化剂(Ti 3 N 2@NCNT(20)-800)表现出与正开始电位(E碱性条件下有希望的氧还原能力的发病1.0V,相对于可逆氢电极(RHE)和电流密度(j)的大号5.3毫安/厘米的)2。出色的氧还原反应(ORR)性能主要来自迷人的碳氮交换(Ti 3 C 2 T x转变为Ti 3 N 2 T x在MXene晶格中)和CNT中的N掺杂,最终导致其复合物的形成,并产生足够的活性中心用于双氧吸附,然后进行电还原。此外,旋转环盘电极(RRDE)研究被携带到特别检测过氧化物(HO 2 - )的形成,并进一步获得洞察ORR动力学。此外,Ti 3 N 2的强大性能在Pt / C上已观察到@NCNT(20)-800电催化剂在高达10,000(10 k)耐久循环的电化学循环过程中的稳定性。因此,我们认为,本方法学提供了一种熟练的方法,可以将碳化物转化为氮化物,并进一步扩展以合成基于MXene的复合材料用于能量转化应用。