当前位置: X-MOL 学术Nature › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Origin of the Invar effect in iron–nickel alloys
Nature ( IF 50.5 ) Pub Date : 1999-07-01 , DOI: 10.1038/21848
Mark van Schilfgaarde , I. A. Abrikosov , B. Johansson

In 1897 Guillaume discovered that face-centred cubic alloys of iron and nickel with a nickel concentration of around 35 atomic per cent exhibit anomalously low (almost zero) thermal expansion over a wide temperature range. This effect, known as the Invar effect, has since been found in various ordered and random alloys and even in amorphous materials. Other physical properties of Invar systems, such as atomic volume, elastic modulus, heat capacity, magnetization and Curie (or Néel) temperature, also show anomalous behaviour. Invar alloys are used in instrumentation, for example as hair springs in watches. It has long been realized that the effect is related to magnetism,; but a full understanding is still lacking. Here we present ab initio calculations of the volume dependences of magnetic and thermodynamic properties for the most typical Invar system, a random face-centred cubic iron–nickel alloy, in which we allow for non-collinear spin alignments—that is, spins that may be canted with respect to the average magnetization direction. We find that the magnetic structure is characterized, even at zero temperature, by a continuous transition from the ferromagnetic state at high volumes to a disordered non-collinear configuration at low volumes. There is an additional, comparable contribution to the net magnetization from the changes in the amplitudes of the local magnetic moments. The non-collinearity gives rise to an anomalous volume dependence of the binding energy, and explains other peculiarities of Invar systems.

中文翻译:

铁镍合金因瓦效应的起源

1897 年,Guillaume 发现镍浓度约为 35 原子百分比的面心立方铁镍合金在很宽的温度范围内表现出异常低(几乎为零)的热膨胀。这种效应被称为因瓦效应,此后在各种有序和无规合金甚至非晶材料中都发现了这种效应。Invar 系统的其他物理特性,例如原子体积、弹性模量、热容、磁化强度和居里(或 Néel)温度,也表现出异常行为。因瓦合金用于仪器仪表,例如手表中的游丝。人们早就意识到这种效应与磁性有关;但仍然缺乏充分的理解。在这里,我们展示了最典型的因瓦合金系统(一种随机面心立方铁镍合金)磁性和热力学性质的体积依赖性的从头计算,其中我们允许非共线自旋排列——即,自旋可能相对于平均磁化方向倾斜。我们发现,即使在零温度下,磁性结构的特征也在于从高体积的铁磁状态到低体积的无序非共线配置的连续转变。局部磁矩幅度的变化对净磁化有一个额外的、可比较的贡献。非共线性引起结合能的异常体积依赖性,并解释了因瓦合金系统的其他特性。一种随机面心立方铁镍合金,其中我们允许非共线自旋排列——即,自旋可能相对于平均磁化方向倾斜。我们发现,即使在零温度下,磁性结构的特征也在于从高体积的铁磁状态到低体积的无序非共线配置的连续转变。局部磁矩幅度的变化对净磁化有一个额外的、可比较的贡献。非共线性引起结合能的异常体积依赖性,并解释了因瓦合金系统的其他特性。一种随机面心立方铁镍合金,其中我们允许非共线自旋排列——即,自旋可能相对于平均磁化方向倾斜。我们发现,即使在零温度下,磁性结构的特征也在于从高体积的铁磁状态到低体积的无序非共线配置的连续转变。局部磁矩幅度的变化对净磁化有一个额外的、可比较的贡献。非共线性引起结合能的异常体积依赖性,并解释了因瓦合金系统的其他特性。我们发现,即使在零温度下,磁性结构的特征也在于从高体积的铁磁状态到低体积的无序非共线配置的连续转变。局部磁矩幅度的变化对净磁化有一个额外的、可比较的贡献。非共线性引起结合能的异常体积依赖性,并解释了因瓦合金系统的其他特性。我们发现,即使在零温度下,磁性结构的特征也在于从高体积的铁磁状态到低体积的无序非共线配置的连续转变。局部磁矩幅度的变化对净磁化有一个额外的、可比较的贡献。非共线性引起结合能的异常体积依赖性,并解释了因瓦合金系统的其他特性。
更新日期:1999-07-01
down
wechat
bug