当前位置: X-MOL 学术Front. Environ. Sci. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Anaerobic biodegradation of trimethoprim with sulfate as an electron acceptor
Frontiers of Environmental Science & Engineering ( IF 6.1 ) Pub Date : 2019-11-10 , DOI: 10.1007/s11783-019-1168-6
Bin Liang , Deyong Kong , Mengyuan Qi , Hui Yun , Zhiling Li , Ke Shi , E. Chen , Alisa S. Vangnai , Aijie Wang

Trimethoprim (TMP) is an antibiotic frequently detected in various environments. Microorganisms are the main drivers of emerging antibiotic contaminant degradation in the environment. However, the feasibility and stability of the anaerobic biodegradation of TMP with sulfate as an electron acceptor remain poorly understood. Here, TMP-degrading microbial consortia were successfully enriched from municipal activated sludge (AS) and river sediment (RS) as the initial inoculums. The acclimated consortia were capable of transforming TMP through demethylation, and the hydroxyl-substituted demethylated product (4-desmethyl-TMP) was further degraded. The biodegradation of TMP followed a 3-parameter sigmoid kinetic model. The potential degraders ( Acetobacterium, Desulfovibrio, Desulfobulbus , and unidentified Peptococcaceae) and fermenters ( Lentimicrobium and Petrimonas ) were significantly enriched in the acclimated consortia. The AS- and RS-acclimated TMP-degrading consortia had similar core microbiomes. The anaerobic biodegradation of TMP could be coupled with sulfate respiration, which gives new insights into the antibiotic fate in real environments and provides a new route for the bioremediation of antibiotic-contaminated environments.



中文翻译:

硫酸盐作为电子受体对甲氧苄啶的厌氧生物降解

甲氧苄啶(TMP)是在各种环境中经常检测到的抗生素。微生物是环境中新出现的抗生素污染物降解的主要驱动力。然而,关于硫酸盐作为电子受体的TMP厌氧生物降解的可行性和稳定性仍然知之甚少。在这里,降解TMP的微生物联盟成功地从市政活性污泥(AS)和河流沉积物(RS)中富集了作为初始接种物。适应的财团能够通过脱甲基转化TMP,并且羟基取代的脱甲基产物(4-desmethyl-TMP)进一步降解。TMP的生物降解遵循3参数的S型动力学模型。潜在的降解物( 醋杆菌,脱硫弧菌,脱硫球 ,以及未鉴定的 肽球菌科)和发酵罐( 慢微生物 Petrimonas )在适应的财团中显着丰富。适应AS和RS的TMP降解联合体具有相似的核心微生物群。TMP的厌氧生物降解可与硫酸盐呼吸作用结合,这为在现实环境中的抗生素命运提供了新见识,并为抗生素污染环境的生物修复提供了新途径。

更新日期:2019-11-10
down
wechat
bug