当前位置:
X-MOL 学术
›
Angew. Chem. Int. Ed.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Silver Single‐Atom Catalyst for Efficient Electrochemical CO2 Reduction Synthesized from Thermal Transformation and Surface Reconstruction
Angewandte Chemie International Edition ( IF 16.1 ) Pub Date : 2020-12-04 , DOI: 10.1002/anie.202014718 Ningqiang Zhang 1 , Xinxin Zhang 2 , Lei Tao 3 , Peng Jiang 1 , Chenliang Ye 1 , Rui Lin 1 , Zhiwei Huang 4 , Ang Li 5 , Dawei Pang 5 , Han Yan 1 , Yu Wang 6 , Peng Xu 7 , Sufeng An 8 , Qinghua Zhang 6 , Licheng Liu 6 , Shixuan Du 6 , Xiaodong Han 5 , Dingsheng Wang 9 , Yadong Li 1
Angewandte Chemie International Edition ( IF 16.1 ) Pub Date : 2020-12-04 , DOI: 10.1002/anie.202014718 Ningqiang Zhang 1 , Xinxin Zhang 2 , Lei Tao 3 , Peng Jiang 1 , Chenliang Ye 1 , Rui Lin 1 , Zhiwei Huang 4 , Ang Li 5 , Dawei Pang 5 , Han Yan 1 , Yu Wang 6 , Peng Xu 7 , Sufeng An 8 , Qinghua Zhang 6 , Licheng Liu 6 , Shixuan Du 6 , Xiaodong Han 5 , Dingsheng Wang 9 , Yadong Li 1
Affiliation
We report an Ag1 single‐atom catalyst (Ag1/MnO2), which was synthesized from thermal transformation of Ag nanoparticles (NPs) and surface reconstruction of MnO2. The evolution process of Ag NPs to single atoms is firstly revealed by various techniques, including in situ ETEM, in situ XRD and DFT calculations. The temperature‐induced surface reconstruction process from the MnO2 (211) to (310) lattice plane is critical to firmly confine the existing surface of Ag single atoms; that is, the thermal treatment and surface reconstruction of MnO2 is the driving force for the formation of single Ag atoms. The as‐obtained Ag1/MnO2 achieved 95.7 % Faradic efficiency at −0.85 V vs. RHE, and coupled with long‐term stability for electrochemical CO2 reduction reaction (CO2RR). DFT calculations indicated single Ag sites possessed high electronic density close to Fermi Level and could act exclusively as the active sites in the CO2RR. As a result, the Ag1/MnO2 catalyst demonstrated remarkable performance for the CO2RR, far surpassing the conventional Ag nanosized catalyst (AgNP/MnO2) and other reported Ag‐based catalysts.
中文翻译:
通过热转化和表面重建合成的银单原子催化剂,可有效降低电化学CO2排放
我们报告了一种Ag 1单原子催化剂(Ag 1 / MnO 2),它是通过Ag纳米颗粒(NPs)的热转化和MnO 2的表面重构合成的。首先通过多种技术揭示了银纳米颗粒向单原子的演化过程,包括原位ETEM,原位XRD和DFT计算。从MnO 2(211)到(310)晶格表面的温度诱导表面重建过程对于牢固地限制Ag单原子的存在表面至关重要。即,MnO 2的热处理和表面重构是形成单个Ag原子的驱动力。所得的Ag 1 / MnO 2相对于RHE,在-0.85 V时可达到95.7%的法拉第效率,并具有电化学CO 2还原反应(CO 2 RR)的长期稳定性。DFT计算表明,单个Ag位点具有接近费米能级的高电子密度,并且可以仅充当CO 2 RR中的活性位点。结果,Ag 1 / MnO 2催化剂表现出了出色的CO 2 RR性能,远远超过了传统的Ag纳米催化剂(Ag NP / MnO 2)和其他已报道的基于Ag的催化剂。
更新日期:2020-12-04
中文翻译:
通过热转化和表面重建合成的银单原子催化剂,可有效降低电化学CO2排放
我们报告了一种Ag 1单原子催化剂(Ag 1 / MnO 2),它是通过Ag纳米颗粒(NPs)的热转化和MnO 2的表面重构合成的。首先通过多种技术揭示了银纳米颗粒向单原子的演化过程,包括原位ETEM,原位XRD和DFT计算。从MnO 2(211)到(310)晶格表面的温度诱导表面重建过程对于牢固地限制Ag单原子的存在表面至关重要。即,MnO 2的热处理和表面重构是形成单个Ag原子的驱动力。所得的Ag 1 / MnO 2相对于RHE,在-0.85 V时可达到95.7%的法拉第效率,并具有电化学CO 2还原反应(CO 2 RR)的长期稳定性。DFT计算表明,单个Ag位点具有接近费米能级的高电子密度,并且可以仅充当CO 2 RR中的活性位点。结果,Ag 1 / MnO 2催化剂表现出了出色的CO 2 RR性能,远远超过了传统的Ag纳米催化剂(Ag NP / MnO 2)和其他已报道的基于Ag的催化剂。