当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Electrical Conductivity of Doped Organic Semiconductors Limited by Carrier–Carrier Interactions
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2020-12-02 , DOI: 10.1021/acsami.0c15490 Marten Koopmans 1 , Miina A. T. Leiviskä 1 , Jian Liu 1 , Jingjin Dong 1 , Li Qiu 1, 2 , Jan C. Hummelen 1, 2 , Giuseppe Portale 1 , Michael C. Heiber 3 , L. Jan Anton Koster 1
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2020-12-02 , DOI: 10.1021/acsami.0c15490 Marten Koopmans 1 , Miina A. T. Leiviskä 1 , Jian Liu 1 , Jingjin Dong 1 , Li Qiu 1, 2 , Jan C. Hummelen 1, 2 , Giuseppe Portale 1 , Michael C. Heiber 3 , L. Jan Anton Koster 1
Affiliation
High electrical conductivity is a prerequisite for improving the performance of organic semiconductors for various applications and can be achieved through molecular doping. However, often the conductivity is enhanced only up to a certain optimum doping concentration, beyond which it decreases significantly. We combine analytical work and Monte Carlo simulations to demonstrate that carrier–carrier interactions can cause this conductivity decrease and reduce the maximum conductivity by orders of magnitude, possibly in a broad range of materials. Using Monte Carlo simulations, we disentangle the effect of carrier–carrier interactions from carrier–dopant interactions. Coulomb potentials of ionized dopants are shown to decrease the conductivity, but barely influence the trend of conductivity versus doping concentration. We illustrate these findings using a doped fullerene derivative for which we can correctly estimate the carrier density at which the conductivity maximizes. We use grazing-incidence wide-angle X-ray scattering to show that the decrease of the conductivity cannot be explained by changes to the microstructure. We propose the reduction of carrier–carrier interactions as a strategy to unlock higher-conductivity organic semiconductors.
中文翻译:
受载流子相互作用限制的掺杂有机半导体的电导率
高电导率是提高有机半导体在各种应用中的性能的先决条件,并且可以通过分子掺杂来实现。然而,电导率通常仅提高到一定的最佳掺杂浓度,超过该浓度就会显着降低。我们将分析工作和蒙特卡洛模拟相结合,证明了载流子与载流子之间的相互作用可能导致电导率下降,并可能在多种材料中将最大电导率降低几个数量级。使用蒙特卡洛模拟,我们可以将载流子-载流子相互作用与载流子-掺杂剂相互作用的影响区分开。已显示电离掺杂剂的库仑电势会降低电导率,但几乎不会影响电导率与掺杂浓度的趋势。我们使用掺杂的富勒烯衍生物说明了这些发现,我们可以正确地估算出电导率最大化时的载流子密度。我们使用掠入射广角X射线散射来显示电导率的下降无法用微观结构的变化来解释。我们建议减少载流子之间的相互作用,以此作为解锁高电导率有机半导体的策略。
更新日期:2020-12-16
中文翻译:
受载流子相互作用限制的掺杂有机半导体的电导率
高电导率是提高有机半导体在各种应用中的性能的先决条件,并且可以通过分子掺杂来实现。然而,电导率通常仅提高到一定的最佳掺杂浓度,超过该浓度就会显着降低。我们将分析工作和蒙特卡洛模拟相结合,证明了载流子与载流子之间的相互作用可能导致电导率下降,并可能在多种材料中将最大电导率降低几个数量级。使用蒙特卡洛模拟,我们可以将载流子-载流子相互作用与载流子-掺杂剂相互作用的影响区分开。已显示电离掺杂剂的库仑电势会降低电导率,但几乎不会影响电导率与掺杂浓度的趋势。我们使用掺杂的富勒烯衍生物说明了这些发现,我们可以正确地估算出电导率最大化时的载流子密度。我们使用掠入射广角X射线散射来显示电导率的下降无法用微观结构的变化来解释。我们建议减少载流子之间的相互作用,以此作为解锁高电导率有机半导体的策略。