当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
1T/2H Mixed Phase MoS2 Nanosheets Integrated by a 3D Nitrogen-Doped Graphene Derivative for Enhanced Electrocatalytic Hydrogen Evolution
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2020-12-01 , DOI: 10.1021/acsami.0c16537
Xiaobei Zang 1 , Yijiang Qin 1 , Teng Wang 1 , Fashun Li 1 , Qingguo Shao 1 , Ning Cao 1
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2020-12-01 , DOI: 10.1021/acsami.0c16537
Xiaobei Zang 1 , Yijiang Qin 1 , Teng Wang 1 , Fashun Li 1 , Qingguo Shao 1 , Ning Cao 1
Affiliation
![]() |
Molybdenum disulfide (MoS2) has become one of the most promising non-platinum-based electrocatalysts for the hydrogen evolution reaction (HER) because of its unique layered structure. However, the catalytic performance of the thermodynamically stable MoS2 is hindered by its poor conductivity and scarce active sites. We developed a 3D porous N-doped graphene derivative-integrated metal–semiconductor (1T-2H) mixed phase MoS2 (MNG) using urea as a doping reagent. The highly exposed active sites were achieved by inducing the phase transition of MoS2 from 2H phase to 1T phase and the inclusion of highly N-incorporated reduced graphene oxide, both of which were simultaneously realized by optimizing the concentration of the doping reagent. Moreover, the charge/proton transfer was enhanced by the well-designed porous architecture and hydrophilic 1T-MoS2. With these advantages, the optimized MNG-40 catalyst has a small overpotential of 157 mV at a cathodic current density of 10 mA cm–2, a relatively low Tafel slope of 45.8 mV dec–1, and an excellent stability. This work represents a new strategy to design higher-performance HER catalysts and provides new insights into the structural regulation of metal composite transitions.
中文翻译:
1T / 2H混合相MoS 2纳米片与3D氮掺杂石墨烯衍生物集成在一起,可增强电催化氢的释放
由于其独特的层状结构,二硫化钼(MoS 2)已成为氢释放反应(HER)最有前途的基于非铂的电催化剂之一。但是,热力学稳定的MoS 2的催化性能由于其差的电导率和稀缺的活性位而受到阻碍。我们使用尿素作为掺杂剂开发了3D多孔N掺杂石墨烯衍生物集成的金属半导体(1T-2H)混合相MoS 2(MNG)。高度暴露的活性位点是通过诱导MoS 2的相变而实现的从2H相到1T相,并加入高度掺入N的还原氧化石墨烯,这两者都是通过优化掺杂剂的浓度同时实现的。此外,通过精心设计的多孔结构和亲水性1T-MoS 2增强了电荷/质子转移。凭借这些优势,经过优化的MNG-40催化剂在10 mA cm –2的阴极电流密度下具有157 mV的小过电位,相对较低的Tafel斜率dec –1的45.8 mV的Tafel斜率,以及出色的稳定性。这项工作代表了设计高性能HER催化剂的新策略,并为金属复合物过渡的结构调节提供了新见解。
更新日期:2020-12-16
中文翻译:

1T / 2H混合相MoS 2纳米片与3D氮掺杂石墨烯衍生物集成在一起,可增强电催化氢的释放
由于其独特的层状结构,二硫化钼(MoS 2)已成为氢释放反应(HER)最有前途的基于非铂的电催化剂之一。但是,热力学稳定的MoS 2的催化性能由于其差的电导率和稀缺的活性位而受到阻碍。我们使用尿素作为掺杂剂开发了3D多孔N掺杂石墨烯衍生物集成的金属半导体(1T-2H)混合相MoS 2(MNG)。高度暴露的活性位点是通过诱导MoS 2的相变而实现的从2H相到1T相,并加入高度掺入N的还原氧化石墨烯,这两者都是通过优化掺杂剂的浓度同时实现的。此外,通过精心设计的多孔结构和亲水性1T-MoS 2增强了电荷/质子转移。凭借这些优势,经过优化的MNG-40催化剂在10 mA cm –2的阴极电流密度下具有157 mV的小过电位,相对较低的Tafel斜率dec –1的45.8 mV的Tafel斜率,以及出色的稳定性。这项工作代表了设计高性能HER催化剂的新策略,并为金属复合物过渡的结构调节提供了新见解。