Journal of Hazardous Materials ( IF 12.2 ) Pub Date : 2020-12-02 , DOI: 10.1016/j.jhazmat.2020.124695 Xiaoshan Feng , Fenqiang Luo , Yinye Chen , Daifeng Lin , Yongjin Luo , Liren Xiao , Xinping Liu , Xiaoli Sun , Qingrong Qian , Qinghua Chen
A one-dimensional (1D) core-shell of Co-Ce oxide has been prepared by multifluidic coaxial electrospinning method and evaluated for the total oxidation of propane (C3H8). Activity and morphological characterizations show that the CeO2@Co3O4 nanofiber catalyst, of which the core is CeO2 and the shell is Co3O4, exhibits excellent oxidation activity. The exposed Co3O4 grown on the outside of the fibers can rapidly react with C3H8 while CeO2 with high oxygen storage capacity in the inside is conductive to the enhanced oxidation rate. Besides, the continuous grain boundary provides a fast mass transfer channel for lattice oxygen, and rich oxygen vacancies favor the mobility of active oxygen species. In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTs) confirms that the CeO2@Co3O4 catalyst have a faster rate of C3H8 adsorption and better oxidation activity with respect to the counterpart using a single-needle electrospinning method. Moreover, the CeO2@Co3O4 catalyst displays excellent thermal stability, and strong resistance against 5 vol% H2O and 5 vol% CO2 at both 300 oC and 400 oC. Our strategy can give some new insights into morphological engineering to promote active oxygen mobility via the construction of one-dimensional core-shell of metal oxides for catalytic oxidation of VOCs.
中文翻译:
通过具有连续晶界和快速晶格氧迁移率的多流体同轴电纺丝制备的CeO 2 @Co 3 O 4纳米纤维催化剂上促进丙烷的总氧化
通过多流体同轴电纺丝法制备了Co-Ce氧化物的一维(1D)核壳,并评估了丙烷(C 3 H 8)的总氧化。活性和形态表征表明的CeO 2 @Co 3 ö 4纳米纤维的催化剂,其中所述芯是的CeO 2和壳是Co 3 ö 4,表现出优异的氧化活性。生长在纤维外侧的裸露Co 3 O 4可以与C 3 H 8快速反应,而CeO 2内部具有高储氧能力的金属有助于提高氧化速率。此外,连续的晶界提供了晶格氧的快速传质通道,富氧空位有利于活性氧的迁移。原位漫反射红外傅里叶变换光谱(DRIFTs)证实,与使用单针静电纺丝方法相比,CeO 2 @Co 3 O 4催化剂具有更快的C 3 H 8吸附速率和更好的氧化活性。此外,CeO 2 @Co 3 O 4催化剂显示出优异的热稳定性,并且对5vol %H的耐受性强在300 o C和400 o C时2 O和5 vol%CO 2。我们的策略可以通过构造一维金属氧化物核壳来催化活性氧的氧化,从而为形态工程学提供新的见解,从而促进活性氧的迁移率。挥发性有机化合物。