Advances in Colloid and Interface Science ( IF 15.9 ) Pub Date : 2020-12-01 , DOI: 10.1016/j.cis.2020.102331 Sengeni Anantharaj , Sudhagar Pitchaimuthu , Suguru Noda
Electrochemical hydrogen peroxide synthesis using two-electron oxygen electrochemistry is an intriguing alternative to currently dominating environmentally unfriendly and potentially hazardous anthraquinone process and noble metals catalysed direct synthesis. Electrocatalytic two-electron oxygen reduction reaction (ORR) and water oxidation reaction (WOR) are the source of electrochemical hydrogen peroxide generation. Various electrocatalysts have been used for the same and were characterized using several electroanalytical, chemical, spectroscopic and chromatographic tools. Though there have been a few reviews summarizing the recent developments in this field, none of them have unified the approaches in catalysts' design, criticized the ambiguities and flaws in the methods of evaluation, and emphasized the role of electrolyte engineering. Hence, we dedicated this review to discuss the recent trends in the catalysts' design, performance optimization, evaluation perspectives and their appropriateness and opportunities with electrolyte engineering. In addition, particularized discussions on fundamental oxygen electrochemistry, additional methods for precise screening, and the role of solution chemistry of synthesized hydrogen peroxide are also presented. Thus, this review discloses the state-of-the-art in an unpresented view highlighting the challenges, opportunities, and alternative perspectives.
中文翻译:
回顾电化学双氧水合成的最新进展,并对观点和策略进行严格评估
使用双电子氧电化学法进行电化学过氧化氢合成是目前主导环境不友好和潜在危险的蒽醌工艺以及贵金属催化直接合成的一种有趣的替代方法。电催化两电子氧还原反应(ORR)和水氧化反应(WOR)是电化学过氧化氢生成的来源。各种电催化剂已用于同一用途,并使用几种电分析,化学,光谱和色谱工具进行了表征。尽管有一些综述总结了该领域的最新进展,但都没有统一催化剂设计的方法,批评了评价方法的歧义和缺陷,并强调了电解质工程的作用。因此,我们专门进行了这次综述,以讨论催化剂设计,性能优化,评估观点及其在电解质工程中的适用性和机会的最新趋势。此外,还提供了有关基本氧电化学的专门讨论,精确筛选的其他方法以及合成过氧化氢的溶液化学的作用。因此,本文以未呈现的观点公开了最新技术,重点介绍了挑战,机遇和替代观点。还介绍了精确筛选的其他方法,以及合成过氧化氢的溶液化学作用。因此,本文以未呈现的观点公开了最新技术,重点介绍了挑战,机遇和替代观点。还介绍了精确筛选的其他方法,以及合成过氧化氢的溶液化学作用。因此,本文以未呈现的观点公开了最新技术,重点介绍了挑战,机遇和替代观点。