Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Conductive Phthalocyanine‐Based Covalent Organic Framework for Highly Efficient Electroreduction of Carbon Dioxide
Small ( IF 13.0 ) Pub Date : 2020-12-01 , DOI: 10.1002/smll.202005254 Meng‐Di Zhang 1, 2, 3 , Duan‐Hui Si 1, 3 , Jun‐Dong Yi 1, 4 , Shao‐Shuai Zhao 1, 3 , Yuan‐Biao Huang 1, 3, 4 , Rong Cao 1, 3, 4
Small ( IF 13.0 ) Pub Date : 2020-12-01 , DOI: 10.1002/smll.202005254 Meng‐Di Zhang 1, 2, 3 , Duan‐Hui Si 1, 3 , Jun‐Dong Yi 1, 4 , Shao‐Shuai Zhao 1, 3 , Yuan‐Biao Huang 1, 3, 4 , Rong Cao 1, 3, 4
Affiliation
The electroreduction of CO2 to value‐added chemicals such as CO is a promising approach to realize carbon‐neutral energy cycle, but still remains big challenge including low current density. Covalent organic frameworks (COFs) with abundant accessible active single‐sites can offer a bridge between homogeneous and heterogeneous electrocatalysis, but the low electrical conductivity limits their application for CO2 electroreduction reaction (CO2RR). Here, a 2D conductive Ni‐phthalocyanine‐based COF, named NiPc‐COF, is synthesized by condensation of 2,3,9,10,16,17,23,24‐octa‐aminophthalocyaninato Ni(II) and tert‐butylpyrene‐tetraone for highly efficient CO2RR. Due to its highly intrinsic conductivity and accessible active sites, the robust conductive 2D NiPc‐COF nanosheets exhibit very high CO selectivity (>93%) in a wide range of the applied potentials of −0.6 to −1.1 V versus the reversible hydrogen electrode (RHE) and large partial current density of 35 mA cm−2 at −1.1 V versus RHE in aqueous solution that surpasses all the conventional COF electrocatalysts. The robust NiPc‐COF that is bridged by covalent pyrazine linkage can maintain its CO2RR activity for 10 h. This work presents the implementation of the conductive COF nanosheets for CO2RR and provides a strategy to enhance energy conversion efficiency in electrocatalysis.
中文翻译:
导电酞菁基共价有机骨架,可实现二氧化碳的高效电还原
将CO 2电还原为增值化学品(例如CO)是实现碳中性能量循环的一种有前途的方法,但仍然存在很大的挑战,包括低电流密度。具有丰富可及活性单点的共价有机骨架(COF)可以在均相和异相电催化之间架起一座桥梁,但低电导率限制了它们在CO 2电还原反应(CO 2 RR)中的应用。在此,通过将2,3,9,10,16,17,23,24-八氨基氨基酞菁缩合为Ni(II)和叔丁基py的2D导电Ni-酞菁基COF合成为NiPc-COF。高效CO 2的四酮RR。由于其固有的高电导率和可访问的活性位点,因此坚固的2D NiPc-COF导电纳米片相对于可逆的氢电极(-0.6至-1.1 V)在很大的施加电势范围(-0.6至-1.1 V)下均具有很高的CO选择性(> 93%)。相对于水溶液中的RHE,RHE)和在-1.1 V时的35 mA cm -2的大分电流密度超过了所有常规COF电催化剂。通过共价吡嗪键桥接的坚固的NiPc-COF可以保持其CO 2 RR活性达10小时。这项工作提出了用于CO 2 RR的导电COF纳米片的实现,并提供了一种在电催化中提高能量转换效率的策略。
更新日期:2020-12-28
中文翻译:
导电酞菁基共价有机骨架,可实现二氧化碳的高效电还原
将CO 2电还原为增值化学品(例如CO)是实现碳中性能量循环的一种有前途的方法,但仍然存在很大的挑战,包括低电流密度。具有丰富可及活性单点的共价有机骨架(COF)可以在均相和异相电催化之间架起一座桥梁,但低电导率限制了它们在CO 2电还原反应(CO 2 RR)中的应用。在此,通过将2,3,9,10,16,17,23,24-八氨基氨基酞菁缩合为Ni(II)和叔丁基py的2D导电Ni-酞菁基COF合成为NiPc-COF。高效CO 2的四酮RR。由于其固有的高电导率和可访问的活性位点,因此坚固的2D NiPc-COF导电纳米片相对于可逆的氢电极(-0.6至-1.1 V)在很大的施加电势范围(-0.6至-1.1 V)下均具有很高的CO选择性(> 93%)。相对于水溶液中的RHE,RHE)和在-1.1 V时的35 mA cm -2的大分电流密度超过了所有常规COF电催化剂。通过共价吡嗪键桥接的坚固的NiPc-COF可以保持其CO 2 RR活性达10小时。这项工作提出了用于CO 2 RR的导电COF纳米片的实现,并提供了一种在电催化中提高能量转换效率的策略。