Journal of Materials Science: Materials in Medicine ( IF 4.2 ) Pub Date : 2020-11-28 , DOI: 10.1007/s10856-020-06467-6 Xuanze Li 1, 2, 3, 4 , Jiao Chen 2, 4 , Zhe Xu 1, 4 , Qiang Zou 1, 2, 4 , Long Yang 1, 2, 4 , Minxian Ma 2, 3, 4 , Liping Shu 2, 3, 4 , Zhixu He 2 , Chuan Ye 1, 2, 3, 4, 5
This study aimed to investigate the effect of graphene oxide (GO)-hydroxyapatite (HA)-sodium alginate (SA) composite application in the field of bone tissue engineering. Four scaffold groups were established (SA-HA, SA-HA-0.8%GO, SA-HA-1.0%GO and SA-HA-1.2%GO) and mixed with bone marrow mesenchymal stem cells (BMSCs). Hydrogel viscosity was measured at room temperature, and after freeze-drying and Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) to detect substance crystallinity, the printability of each hydrogel type was measured with a printing grid. Scanning electron microscopy (SEM) was used to observe the internal microstructure of the scaffolds and to evaluate the growth and proliferation of cells on the scaffold. A hollow cylinder was printed to compare the forming effect of the hydrogel bioinks, and cell-hydrogel composites were implanted under the skin of nude mice to observe the effect of the hydrogels on osteogenesis in vivo. Increased GO concentrations led to reduced scaffold degradation rates, increased viscosity, increased printability, increased mechanical properties, increased scaffold porosity and increased cell proliferation rates. In vivo experiments showed that hematoxylin and eosin (HE) staining, Alizarin red staining, alkaline phosphatase staining and collagen type I immunohistochemical staining increased as the implantation time increased. These results demonstrate that GO composites have high printability as bioinks and can be used for bioprinting of bone by altering the ratio of the different components.
中文翻译:
氧化石墨烯-羟基磷灰石-海藻酸盐水凝胶复合材料诱导干细胞成骨分化及组织工程骨构建
本研究旨在探讨氧化石墨烯(GO)-羟基磷灰石(HA)-海藻酸钠(SA)复合材料在骨组织工程领域的应用效果。建立四个支架组(SA-HA、SA-HA-0.8%GO、SA-HA-1.0%GO 和 SA-HA-1.2%GO)并与骨髓间充质干细胞(BMSCs)混合。在室温下测量水凝胶粘度,并在冷冻干燥和傅里叶变换红外光谱(FTIR)和 X 射线衍射(XRD)检测物质结晶度后,用印刷网格测量每种水凝胶类型的可印刷性。扫描电子显微镜(SEM)用于观察支架的内部微观结构并评估支架上细胞的生长和增殖。打印一个空心圆柱体来比较水凝胶生物墨水的形成效果,将细胞-水凝胶复合物植入裸鼠皮下,观察水凝胶对体内成骨的影响。GO 浓度的增加导致支架降解率降低、粘度增加、可印刷性增加、机械性能增加、支架孔隙率增加和细胞增殖率增加。体内实验表明,随着植入时间的增加,苏木精和伊红(HE)染色、茜素红染色、碱性磷酸酶染色和I型胶原免疫组化染色增加。这些结果表明,GO 复合材料作为生物墨水具有很高的可印刷性,并且可以通过改变不同组分的比例来用于骨骼的生物打印。GO 浓度的增加导致支架降解率降低、粘度增加、可印刷性增加、机械性能增加、支架孔隙率增加和细胞增殖率增加。体内实验表明,随着植入时间的增加,苏木精和伊红(HE)染色、茜素红染色、碱性磷酸酶染色和I型胶原免疫组化染色增加。这些结果表明,GO 复合材料作为生物墨水具有很高的可印刷性,并且可以通过改变不同组分的比例来用于骨骼的生物打印。GO 浓度的增加导致支架降解率降低、粘度增加、可印刷性增加、机械性能增加、支架孔隙率增加和细胞增殖率增加。体内实验表明,随着植入时间的增加,苏木精和伊红(HE)染色、茜素红染色、碱性磷酸酶染色和I型胶原免疫组化染色增加。这些结果表明,GO 复合材料作为生物墨水具有很高的可印刷性,并且可以通过改变不同组分的比例来用于骨骼的生物打印。体内实验表明,随着植入时间的增加,苏木精和伊红(HE)染色、茜素红染色、碱性磷酸酶染色和I型胶原免疫组化染色增加。这些结果表明,GO 复合材料作为生物墨水具有很高的可印刷性,并且可以通过改变不同组分的比例来用于骨骼的生物打印。体内实验表明,随着植入时间的增加,苏木精和伊红(HE)染色、茜素红染色、碱性磷酸酶染色和I型胶原免疫组化染色增加。这些结果表明,GO 复合材料作为生物墨水具有很高的可印刷性,并且可以通过改变不同组分的比例来用于骨骼的生物打印。