Biomaterials Advances ( IF 5.5 ) Pub Date : 2020-11-26 , DOI: 10.1016/j.msec.2020.111746 Sajjad Fanaee , Sheyda Labbaf , Mohammad Hossein Enayati , Fereshteh Karamali , Mohammad-Hossein Nasr Esfahani
There is a great need for tissue engineering constructs with the ability to modulate stem cell behavior. The initial adhesion, growth and differentiation of stem cell are a key strategy in bone tissue engineering and it can be controlled through biomaterial-cell interface. Here we engineered a polycaprolactone/gelatin/bioactive glass (PCL/GT/BG) nanocomposite scaffold coated with Fibronectin (FN) as a potential candidate to aid the bone regeneration process by giving cells a temporary template to grow into. For this purpose, initially BG nanoparticles (nBG) of 70 ± 15 nm were synthesized, characterized and then impregnated into PCL/GT matrix to create a nanocomposite fibrous mesh. An optimized structure was selected based on fiber uniformity, diameter, and the mechanical properties. Cell adhesion, growth, and the expression of osteogenic-related genes as a result of FN tethering, through specific surface interactions, was evaluated. Furthermore, the potential of optimized nanofiberous structure as a drug delivery vehicle for the local release of therapeutic agents was studied by using amoxicillin as a model drug. The release profile revealed that around 70% of drug was released in an hour for non-crosslinked fibers (burst release) followed by a gradual release up to 72 h. The release profile was steadier for crosslinked fibers. The scaffold also showed an antibacterial effect against ubiquitous gram-positive Staphylococcus aureus. The current study provides an insight for future researchers who aim to create nanocomposite materials as multifunctional scaffolds for bone tissue engineering applications.
中文翻译:
创建生物界面作为成骨细胞分化刺激物的纳米方法
非常需要能够调节干细胞行为的组织工程构建体。干细胞的初始粘附,生长和分化是骨组织工程中的关键策略,可以通过生物材料-细胞界面进行控制。在这里,我们设计了涂有纤连蛋白(FN)的聚己内酯/明胶/生物活性玻璃(PCL / GT / BG)纳米复合支架,作为通过向细胞提供临时模板以使其生长而有助于骨再生过程的潜在候选人。为此,最初合成了70±15 nm的BG纳米颗粒(nBG),对其进行了表征,然后将其浸渍到PCL / GT基质中以创建纳米复合纤维网。根据纤维均匀性,直径和机械性能选择优化的结构。细胞粘附,生长,并通过特定的表面相互作用评估了FN系链后成骨相关基因的表达。此外,通过使用阿莫西林作为模型药物,研究了优化的纳米纤维结构作为药物局部释放治疗剂的载体。释放曲线表明,非交联纤维在一个小时内释放了约70%的药物(爆发释放),随后逐渐释放长达72小时。对于交联纤维,释放曲线更稳定。该支架还显示出对普遍存在的革兰氏阳性菌的抗菌作用 以阿莫西林为模型药物,研究了优化的纳米纤维结构作为局部释放治疗剂的药物传递载体的潜力。释放曲线表明,非交联纤维在一个小时内释放了约70%的药物(爆发释放),随后逐渐释放长达72小时。对于交联纤维,释放曲线更稳定。该支架还显示出对普遍存在的革兰氏阳性菌的抗菌作用 以阿莫西林为模型药物,研究了优化的纳米纤维结构作为局部释放治疗剂的药物传递载体的潜力。释放曲线表明,非交联纤维在一个小时内释放了约70%的药物(爆发释放),随后逐渐释放长达72小时。对于交联纤维,释放曲线更稳定。该支架还显示出对普遍存在的革兰氏阳性菌的抗菌作用金黄色葡萄球菌。本研究为将来的研究人员提供了见识,他们打算将纳米复合材料制成用于骨组织工程应用的多功能支架。