Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A Hydrogen-Initiated Chemical Epitaxial Growth Strategy for In-Plane Heterostructured Photocatalyst
ACS Nano ( IF 15.8 ) Pub Date : 2020-11-25 , DOI: 10.1021/acsnano.0c07934 Jinqiang Zhang 1 , Yunguo Li 2 , Xiaoli Zhao 1 , Huayang Zhang 3 , Liang Wang 4 , Haijun Chen 5 , Shuaijun Wang 1 , Xinyuan Xu 1 , Lei Shi 1 , Lai-Chang Zhang 1 , Jean-Pierre Veder 6 , Shiyong Zhao 7 , Gareth Nealon 8 , Mingbo Wu 9 , Shaobin Wang 3 , Hongqi Sun 1
ACS Nano ( IF 15.8 ) Pub Date : 2020-11-25 , DOI: 10.1021/acsnano.0c07934 Jinqiang Zhang 1 , Yunguo Li 2 , Xiaoli Zhao 1 , Huayang Zhang 3 , Liang Wang 4 , Haijun Chen 5 , Shuaijun Wang 1 , Xinyuan Xu 1 , Lei Shi 1 , Lai-Chang Zhang 1 , Jean-Pierre Veder 6 , Shiyong Zhao 7 , Gareth Nealon 8 , Mingbo Wu 9 , Shaobin Wang 3 , Hongqi Sun 1
Affiliation
Integrating carbon nitride with graphene into a lateral heterojunction would avoid energy loss within the interlaminar space region on conventional composites. To date, its synthesis process is limited to the bottom-up method which lacks the targeting and homogeneity. Herein, we proposed a hydrogen-initiated chemical epitaxial growth strategy at a relatively low temperature for the fabrication of graphene/carbon nitride in-plane heterostructure. Theoretical and experimental analysis proved that methane via in situ generation from the hydrogenated decomposition of carbon nitride triggered the graphene growth along the active sites at the edges of confined spaces. With the enhanced electrical field from the deposited graphene (0.5%), the performances on selective photo-oxidation and photocatalytic water splitting were promoted by 5.5 and 3.7 times, respectively. Meanwhile, a 7720 μmol/h/g(graphene) hydrogen evolution rate was acquired without any cocatalysts. This study provides an top-down strategy to synthesize in-plane catalyst for the utilization of solar energy.
中文翻译:
平面内异质结构光催化剂的氢引发化学外延生长策略
将氮化碳和石墨烯整合到横向异质结中可以避免常规复合材料的层间空间区域内的能量损失。迄今为止,其合成过程仅限于缺乏靶向性和均一性的自下而上的方法。在本文中,我们提出了一种在较低温度下氢引发的化学外延生长策略,用于制造石墨烯/碳氮化物面内异质结构。理论和实验分析证明甲烷是通过原位氮化碳氢化分解产生的碳氢化合物触发了石墨烯沿密闭空间边缘的活性位点生长。随着沉积石墨烯(0.5%)电场的增强,选择性光氧化和光催化水分解的性能分别提高了5.5倍和3.7倍。同时,获得了没有任何助催化剂的7720μmol/ h / g (石墨烯)析氢速率。这项研究提供了一种自上而下的策略来合成平面内催化剂以利用太阳能。
更新日期:2020-12-22
中文翻译:
平面内异质结构光催化剂的氢引发化学外延生长策略
将氮化碳和石墨烯整合到横向异质结中可以避免常规复合材料的层间空间区域内的能量损失。迄今为止,其合成过程仅限于缺乏靶向性和均一性的自下而上的方法。在本文中,我们提出了一种在较低温度下氢引发的化学外延生长策略,用于制造石墨烯/碳氮化物面内异质结构。理论和实验分析证明甲烷是通过原位氮化碳氢化分解产生的碳氢化合物触发了石墨烯沿密闭空间边缘的活性位点生长。随着沉积石墨烯(0.5%)电场的增强,选择性光氧化和光催化水分解的性能分别提高了5.5倍和3.7倍。同时,获得了没有任何助催化剂的7720μmol/ h / g (石墨烯)析氢速率。这项研究提供了一种自上而下的策略来合成平面内催化剂以利用太阳能。