Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Passive Anti-Icing and Active Electrothermal Deicing System Based on an Ultraflexible Carbon Nanowire (CNW)/PDMS Biomimetic Nanocomposite with a Superhydrophobic Microcolumn Surface
Langmuir ( IF 3.7 ) Pub Date : 2020-11-19 , DOI: 10.1021/acs.langmuir.0c01745 Yongyang Sun 1 , Xin Sui 1 , Yubo Wang 1 , Wenyan Liang 1 , Fangxin Wang 2
Langmuir ( IF 3.7 ) Pub Date : 2020-11-19 , DOI: 10.1021/acs.langmuir.0c01745 Yongyang Sun 1 , Xin Sui 1 , Yubo Wang 1 , Wenyan Liang 1 , Fangxin Wang 2
Affiliation
The icephobicity property of multifunctional surfaces has been widely studied due to their potential application in the aerospace field. Herein, a controllable CNW/PDMS biomimetic nanocomposite film with a superhydrophobic surface is fabricated. The microcolumns are etched on the surface of the biomimetic nanocomposite to provide superhydrophobicity. Two defense strategies of biomimetic nanocomposites are proposed while passive anti-icing and active electrothermal deicing behaviors of the biomimetic nanocomposite are experimentally studied. It is found that the initial nucleation time of a single water droplet is delayed by 353.3 s on the superhydrophobic surface relative to the hydrophilic surface. The adhesion strength increases with the increase of surface roughness. The heating uniformity on the biomimetic nanocomposite surface was validated by infrared thermography technology. The ice layer is completely melted within 150 s under 40 V voltage captured by a noncontact infrared camera. The proposed strategy was validated by the characterization of the passive anti-icing and active electrothermal deicing property from biomimetic nanocomposites with superhydrophobic microstructure surfaces. Research results show that the two lines of defense collaborative work for an icephobicity system were able to keep biomimetic nanocomposite surfaces ice-free under test conditions.
中文翻译:
基于超疏水碳纳米线(CNW)/ PDMS仿生纳米复合材料且具有超疏水微柱表面的被动防冰和主动电除冰系统
由于多功能表面在航空航天领域的潜在应用,因此已经对其进行了广泛的研究。在此,制备了具有超疏水表面的可控CNW / PDMS仿生纳米复合膜。将微柱蚀刻在仿生纳米复合材料的表面上以提供超疏水性。提出了仿生纳米复合材料的两种防御策略,并通过实验研究了仿生纳米复合材料的被动除冰和主动电热除冰行为。结果发现,相对于亲水性表面,单个水滴的初始成核时间在超疏水性表面上延迟了353.3 s。粘合强度随表面粗糙度的增加而增加。通过红外热成像技术验证了仿生纳米复合材料表面的加热均匀性。在非接触式红外热像仪捕获的40 V电压下,冰层在150 s内完全融化。通过对具有超疏水微结构表面的仿生纳米复合材料的被动除冰和主动电除冰性能进行了表征,验证了所提出的策略。研究结果表明,疏冰系统的两道防线协同工作能够在测试条件下保持仿生纳米复合材料表面无冰。通过对具有超疏水微结构表面的仿生纳米复合材料的被动除冰和主动电除冰性能进行了表征,验证了所提出的策略。研究结果表明,疏冰系统的两道防线协同工作能够在测试条件下保持仿生纳米复合材料表面无冰。通过对具有超疏水微结构表面的仿生纳米复合材料的被动除冰和主动电除冰性能进行了表征,验证了所提出的策略。研究结果表明,疏冰系统的两道防线协同工作能够在测试条件下保持仿生纳米复合材料表面无冰。
更新日期:2020-12-08
中文翻译:
基于超疏水碳纳米线(CNW)/ PDMS仿生纳米复合材料且具有超疏水微柱表面的被动防冰和主动电除冰系统
由于多功能表面在航空航天领域的潜在应用,因此已经对其进行了广泛的研究。在此,制备了具有超疏水表面的可控CNW / PDMS仿生纳米复合膜。将微柱蚀刻在仿生纳米复合材料的表面上以提供超疏水性。提出了仿生纳米复合材料的两种防御策略,并通过实验研究了仿生纳米复合材料的被动除冰和主动电热除冰行为。结果发现,相对于亲水性表面,单个水滴的初始成核时间在超疏水性表面上延迟了353.3 s。粘合强度随表面粗糙度的增加而增加。通过红外热成像技术验证了仿生纳米复合材料表面的加热均匀性。在非接触式红外热像仪捕获的40 V电压下,冰层在150 s内完全融化。通过对具有超疏水微结构表面的仿生纳米复合材料的被动除冰和主动电除冰性能进行了表征,验证了所提出的策略。研究结果表明,疏冰系统的两道防线协同工作能够在测试条件下保持仿生纳米复合材料表面无冰。通过对具有超疏水微结构表面的仿生纳米复合材料的被动除冰和主动电除冰性能进行了表征,验证了所提出的策略。研究结果表明,疏冰系统的两道防线协同工作能够在测试条件下保持仿生纳米复合材料表面无冰。通过对具有超疏水微结构表面的仿生纳米复合材料的被动除冰和主动电除冰性能进行了表征,验证了所提出的策略。研究结果表明,疏冰系统的两道防线协同工作能够在测试条件下保持仿生纳米复合材料表面无冰。