当前位置:
X-MOL 学术
›
ACS Appl. Energy Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Ultrathin Li6.75La3Zr1.75Ta0.25O12-Based Composite Solid Electrolytes Laminated on Anode and Cathode Surfaces for Anode-free Lithium Metal Batteries
ACS Applied Energy Materials ( IF 5.4 ) Pub Date : 2020-11-13 , DOI: 10.1021/acsaem.0c01714 Tilahun Awoke Zegeye, Wei-Nien Su, Fekadu Wubatu Fenta, Tamene Simachew Zeleke, Shi-Kai Jiang, Bing Joe Hwang
ACS Applied Energy Materials ( IF 5.4 ) Pub Date : 2020-11-13 , DOI: 10.1021/acsaem.0c01714 Tilahun Awoke Zegeye, Wei-Nien Su, Fekadu Wubatu Fenta, Tamene Simachew Zeleke, Shi-Kai Jiang, Bing Joe Hwang
The low ionic conductivity, thermal stability and incompatibility of pellet-like solid-state electrolytes lead to low cycling performance in anode-free lithium metal batteries. Herein, we report an effective and feasible composite solid electrolyte-designing approach using the garnet (Li6.75La3Zr1.75Ta0.25O12, LLZTO)–polymer composite electrolyte (LLZTO/PEO-CPE) laminated on both the anode and cathode surfaces with an ultrathin thickness of 7–10 μm by spin coating method. It is found that the LLZTO/PEO-CPE exhibits a high ionic conductivity of about 4.76 × 10–4 S/cm at room temperature, excellent thermal stability, and good compatibility. Moreover, it simplifies the preparation of solid electrolytes and reduces the interfacial and grain boundary resistances for ion transfer. The use of both anode and cathode laminating enables dendrite-free lithium plating on copper with a high average coulombic efficiency and cycling stability of 98.8 and 41.2%, respectively, after the 65 cycles at 0.2 mA/cm2 and 55 °C in an anode-free battery. This work provides a new design of solid-state electrolytes (SSEs) to achieve safe and dendrite-free anode-free batteries.
中文翻译:
无阳极锂金属电池用超薄Li 6.75 La 3 Zr 1.75 Ta 0.25 O 12基复合固体电解质层压在阳极和阴极表面上
粒状固态电解质的低离子电导率,热稳定性和不相容性导致无阳极锂金属电池的循环性能降低。在这里,我们报告了一种有效而可行的复合固体电解质设计方法,该方法使用石榴石(Li 6.75 La 3 Zr 1.75 Ta 0.25 O 12,LLZTO)-聚合物复合电解质(LLZTO / PEO-CPE)层压在阳极和阴极表面上通过旋涂法制成的超薄厚度为7–10μm。发现LLZTO / PEO-CPE具有约4.76×10 –4的高离子电导率在室温下为S / cm,具有出色的热稳定性和良好的相容性。此外,它简化了固体电解质的制备并降低了离子转移的界面和晶界电阻。在阳极中进行0.2 mA / cm 2和55°C的65次循环后,同时使用阳极和阴极层压可在铜上进行无枝晶锂电镀,平均库仑效率高,循环稳定性分别为98.8和41.2%。电池。这项工作提供了一种固态电解质(SSE)的新设计,以实现安全且无枝晶的无阳极电池。
更新日期:2020-12-28
中文翻译:
无阳极锂金属电池用超薄Li 6.75 La 3 Zr 1.75 Ta 0.25 O 12基复合固体电解质层压在阳极和阴极表面上
粒状固态电解质的低离子电导率,热稳定性和不相容性导致无阳极锂金属电池的循环性能降低。在这里,我们报告了一种有效而可行的复合固体电解质设计方法,该方法使用石榴石(Li 6.75 La 3 Zr 1.75 Ta 0.25 O 12,LLZTO)-聚合物复合电解质(LLZTO / PEO-CPE)层压在阳极和阴极表面上通过旋涂法制成的超薄厚度为7–10μm。发现LLZTO / PEO-CPE具有约4.76×10 –4的高离子电导率在室温下为S / cm,具有出色的热稳定性和良好的相容性。此外,它简化了固体电解质的制备并降低了离子转移的界面和晶界电阻。在阳极中进行0.2 mA / cm 2和55°C的65次循环后,同时使用阳极和阴极层压可在铜上进行无枝晶锂电镀,平均库仑效率高,循环稳定性分别为98.8和41.2%。电池。这项工作提供了一种固态电解质(SSE)的新设计,以实现安全且无枝晶的无阳极电池。