Nature Communications ( IF 14.7 ) Pub Date : 2020-11-12 , DOI: 10.1038/s41467-020-19536-9
Liangdong Sun , Hongcheng Gu , Xiaojiang Liu , Haibin Ni , Qiwei Li , Yi Zeng , Ning Chang , Di Zhang , Hongyuan Chen , Zhiyong Li , Xiangwei Zhao , Zhongze Gu
Conventional atomic force microscopy (AFM) tips have remained largely unchanged in nanomachining processes, constituent materials, and microstructural constructions for decades, which limits the measurement performance based on force-sensing feedbacks. In order to save the scanning images from distortions due to excessive mechanical interactions in the intermittent shear-mode contact between scanning tips and sample, we propose the application of controlled microstructural architectured material to construct AFM tips by exploiting material-related energy-absorbing behavior in response to the tip–sample impact, leading to visual promotions of imaging quality. Evidenced by numerical analysis of compressive responses and practical scanning tests on various samples, the essential scanning functionality and the unique contribution of the cellular buffer layer to imaging optimization are strongly proved. This approach opens new avenues towards the specific applications of cellular solids in the energy-absorption field and sheds light on novel AFM studies based on 3D-printed tips possessing exotic properties.
中文翻译:

用于剪切模式下音叉原子力显微镜的3D打印细胞尖端
数十年来,传统的原子力显微镜(AFM)尖端在纳米加工工艺,组成材料和微结构构造中始终保持不变,这限制了基于力感应反馈的测量性能。为了避免由于扫描尖端和样品之间的间歇剪切模式接触中过度的机械相互作用而导致的扫描图像变形,我们建议利用可控的微结构结构材料通过利用与材料相关的能量吸收行为来构造AFM尖端。对尖端样品冲击的响应,导致成像质量的视觉提升。通过压缩响应的数值分析和各种样品的实际扫描测试证明,充分证明了基本的扫描功能和细胞缓冲层对成像优化的独特贡献。这种方法为细胞固体在能量吸收领域的具体应用开辟了新途径,并为基于具有奇异性质的3D打印尖端的新型AFM研究提供了启示。