当前位置: X-MOL 学术Food Res. Int. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
omBlack rice (Oryza sativa L.) processing: Evaluation of physicochemical properties, in vitro starch digestibility, and phenolic functions linked to type 2 diabetes
Food Research International ( IF 7.0 ) Pub Date : 2020-11-10 , DOI: 10.1016/j.foodres.2020.109898
Halah Aalim , Di Wang , Zisheng Luo

Black rice is recognized for managing diabetes in Chinese folk medicine. Therefore, the present study investigates the effect of thermal treatments and the succeeding cooking on black rice physicochemical properties, phenolic composition, total antioxidant activity (TAA), enzymes and glycation inhibition in addition to starch digestibility. Thermal decomposition of anthocyanin and cyanidin-3-glucoside was evident across all processing methods and reflected in increasing levels of protocatechuic acid, while proanthocyanidins (TPAC) were susceptible to cooking. Roasting of grains sustained total phenolics (TPC), flavonoids (TFC), TPAC, and antilipase activity. Additionally, the combined effect of frying and cooking diminished TFC, TPAC, and α-glucosidase inhibition. The thermally treated grains showed pronounced activity against α-amylase, α-glucosidase, and glycation, whereas their cooked counterparts reduced the estimated glycemic index (eGI), and enhanced resistant starch (RS). Processed grains chrominance, TAA, and apparent amylose content (AAC) showed a significant correlation with phenolics. These findings are demonstrating that black rice processing is favorable for the dietary management of metabolic disorders such as diabetes and hyperlipidemia.

更新日期:2020-11-12
down
wechat
bug