当前位置:
X-MOL 学术
›
J. Am. Chem. Soc.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Molecular Engineering of Chromophores to Enable Triplet–Triplet Annihilation Upconversion
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2020-11-11 , DOI: 10.1021/jacs.0c06386 Kealan J. Fallon 1 , Emily M. Churchill 1 , Samuel N. Sanders 2 , James Shee 1 , John L. Weber 1 , Rinat Meir 1 , Steffen Jockusch 1 , David R. Reichman 1 , Matthew Y. Sfeir 3, 4 , Daniel N. Congreve 2 , Luis M. Campos 1
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2020-11-11 , DOI: 10.1021/jacs.0c06386 Kealan J. Fallon 1 , Emily M. Churchill 1 , Samuel N. Sanders 2 , James Shee 1 , John L. Weber 1 , Rinat Meir 1 , Steffen Jockusch 1 , David R. Reichman 1 , Matthew Y. Sfeir 3, 4 , Daniel N. Congreve 2 , Luis M. Campos 1
Affiliation
Triplet-triplet annihilation upconversion (TTA-UC) is an unconventional photophysical process that yields high-energy photons from low-energy incident light and offers pathways for innovation across many technologies, including solar energy harvesting, photochemistry, and optogenetics. Within aromatic organic chromophores, TTA-UC is achieved through several consecutive energy conversion events that ultimately fuse two triplet excitons into a singlet exciton. In chromophores where the singlet exciton is roughly isoergic with two triplet excitons, the limiting step is the triplet-triplet annihilation pathway, where the kinetics and yield depend sensitively on the energies of the lowest singlet and triplet excited states. Herein we report up to 40-fold improvements in upconversion quantum yields using molecular engineering to selectively tailor the relative energies of the lowest singlet and triplet excited states, enhancing the yield of triplet-triplet annihilation and promoting radiative decay of the resulting singlet exciton. Using this general and effective strategy, we obtain upconversion yields with red emission that are among the highest reported, with remarkable chemical stability under ambient conditions.
中文翻译:
发色团的分子工程使三重态-三重态湮灭上转换成为可能
三重态-三重态湮灭上转换 (TTA-UC) 是一种非常规光物理过程,可从低能入射光中产生高能光子,并为许多技术的创新提供途径,包括太阳能收集、光化学和光遗传学。在芳香族有机发色团中,TTA-UC 是通过几个连续的能量转换事件实现的,这些事件最终将两个三重态激子融合成一个单重态激子。在单线态激子与两个三线态激子大致等能的发色团中,限制步骤是三线态-三线态湮灭途径,其中动力学和产率敏感地取决于最低单线态和三线态激发态的能量。在此,我们报告使用分子工程选择性地调整最低单线态和三线态激发态的相对能量,提高三线态-三线态湮灭的产率并促进所得单线态激子的辐射衰减,使上转换量子产率提高了 40 倍。使用这种通用且有效的策略,我们获得了最高的红色发射率,在环境条件下具有显着的化学稳定性。
更新日期:2020-11-11
中文翻译:
发色团的分子工程使三重态-三重态湮灭上转换成为可能
三重态-三重态湮灭上转换 (TTA-UC) 是一种非常规光物理过程,可从低能入射光中产生高能光子,并为许多技术的创新提供途径,包括太阳能收集、光化学和光遗传学。在芳香族有机发色团中,TTA-UC 是通过几个连续的能量转换事件实现的,这些事件最终将两个三重态激子融合成一个单重态激子。在单线态激子与两个三线态激子大致等能的发色团中,限制步骤是三线态-三线态湮灭途径,其中动力学和产率敏感地取决于最低单线态和三线态激发态的能量。在此,我们报告使用分子工程选择性地调整最低单线态和三线态激发态的相对能量,提高三线态-三线态湮灭的产率并促进所得单线态激子的辐射衰减,使上转换量子产率提高了 40 倍。使用这种通用且有效的策略,我们获得了最高的红色发射率,在环境条件下具有显着的化学稳定性。