当前位置: X-MOL 学术ACS Appl. Mater. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Will Sulfide Electrolytes be Suitable Candidates for Constructing a Stable Solid/Liquid Electrolyte Interface?
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2020-11-10 , DOI: 10.1021/acsami.0c16899
Bo Fan 1 , Yanghai Xu 1 , Rui Ma 2 , Zhongkuan Luo 2 , Fang Wang 2 , Xianghua Zhang 3 , Hongli Ma 3 , Ping Fan 1 , Bai Xue 1 , Weiqiang Han 4
Affiliation  

Conversion-type batteries with electrode materials partially dissolved in a liquid electrolyte exhibit high specific capacity and excellent redox kinetics, but currently poor stability due to the shuttle effect. Using a solid-electrolyte separator to block the mass exchange between the cathode and the anode can eliminate the shuttle effect. A stable interface between the solid-electrolyte separator and the liquid electrolyte is essential for the battery performance. Here, we demonstrate that a stable interface with low interfacial resistance and limited side reactions can be formed between the sulfide solid-electrolyte β-Li3PS4 and the widely used ether-based liquid electrolytes, under both reduction and oxidation conditions, due to the rapid formation of an effective protective layer of ether-solvated Li3PS4 at the sulfide/liquid electrolyte interface. This discovery has inspired the design of a β-Li3PS4-coated solid-electrolyte Li7P3S11 separator with a simultaneously high ion-conduction ability and good interfacial stability with the liquid electrolyte, so that hybrid lithium–sulfur (Li–S) batteries with this composite separator conserve a high discharge capacity of 1047 mA h g–1 and a high second discharge plateau of 2.06 V after 150 cycles.

中文翻译:

硫化物电解质是否适合构建稳定的固体/液体电解质界面?

电极材料部分溶解在液体电解质中的转换型电池具有高的比容量和出色的氧化还原动力学,但由于穿梭效应,目前稳定性较差。使用固体电解质隔板阻止阴极和阳极之间的质量交换可以消除穿梭效应。固体电解质隔板和液体电解质之间的稳定界面对于电池性能至关重要。在这里,我们表明,具有低界面电阻和限制副反应稳定的界面可以在硫化物固体电解质之间形成β-栗3 PS 4由于在硫化物/液体电解质界面上迅速形成了醚化的Li 3 PS 4有效保护层,因此在还原和氧化条件下均可广泛使用基于醚的液体电解质。这一发现激发了β-Li的设计3 PS 4包被的固体电解质锂7 P 3小号11分离器具有同时具有高的离子传导能力和良好的界面稳定与液体电解质,以使得混合锂-硫(使用这种复合隔膜的Li–S)电池在150个循环后可保持1047 mA hg –1的高放电容量和2.06 V的高二次放电平稳性。
更新日期:2020-11-25
down
wechat
bug