当前位置:
X-MOL 学术
›
Angew. Chem. Int. Ed.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
An Inorganic‐Rich Solid Electrolyte Interphase for Advanced Lithium‐Metal Batteries in Carbonate Electrolytes
Angewandte Chemie International Edition ( IF 16.1 ) Pub Date : 2020-11-09 , DOI: 10.1002/anie.202012005
Sufu Liu 1 , Xiao Ji 1 , Nan Piao 1 , Ji Chen 1 , Nico Eidson 1 , Jijian Xu 1 , Pengfei Wang 1 , Long Chen 1 , Jiaxun Zhang 1 , Tao Deng 1 , Singyuk Hou 1 , Ting Jin 1 , Hongli Wan 1 , Jingru Li 2 , Jiangping Tu 2 , Chunsheng Wang 1
Angewandte Chemie International Edition ( IF 16.1 ) Pub Date : 2020-11-09 , DOI: 10.1002/anie.202012005
Sufu Liu 1 , Xiao Ji 1 , Nan Piao 1 , Ji Chen 1 , Nico Eidson 1 , Jijian Xu 1 , Pengfei Wang 1 , Long Chen 1 , Jiaxun Zhang 1 , Tao Deng 1 , Singyuk Hou 1 , Ting Jin 1 , Hongli Wan 1 , Jingru Li 2 , Jiangping Tu 2 , Chunsheng Wang 1
Affiliation
![]() |
In carbonate electrolytes, the organic–inorganic solid electrolyte interphase (SEI) formed on the Li‐metal anode surface is strongly bonded to Li and experiences the same volume change as Li, thus it undergoes continuous cracking/reformation during plating/stripping cycles. Here, an inorganic‐rich SEI is designed on a Li‐metal surface to reduce its bonding energy with Li metal by dissolving 4m concentrated LiNO3 in dimethyl sulfoxide (DMSO) as an additive for a fluoroethylene‐carbonate (FEC)‐based electrolyte. Due to the aggregate structure of NO3− ions and their participation in the primary Li+ solvation sheath, abundant Li2O, Li3N, and LiNxOy grains are formed in the resulting SEI, in addition to the uniform LiF distribution from the reduction of PF6− ions. The weak bonding of the SEI (high interface energy) to Li can effectively promote Li diffusion along the SEI/Li interface and prevent Li dendrite penetration into the SEI. As a result, our designed carbonate electrolyte enables a Li anode to achieve a high Li plating/stripping Coulombic efficiency of 99.55 % (1 mA cm−2, 1.0 mAh cm−2) and the electrolyte also enables a Li||LiNi0.8Co0.1Mn0.1O2 (NMC811) full cell (2.5 mAh cm−2) to retain 75 % of its initial capacity after 200 cycles with an outstanding CE of 99.83 %.
中文翻译:
用于碳酸盐电解质中高级锂金属电池的无机丰富固体电解质中间相
在碳酸盐电解质中,在锂金属阳极表面上形成的有机-无机固体电解质中间相(SEI)与Li牢固结合并经历与Li相同的体积变化,因此在电镀/剥离循环中会经历连续的开裂/重整。此处,在锂金属表面设计了一种富含无机物的SEI,通过将4 m浓缩的LiNO 3溶解在二甲基亚砜(DMSO)中作为氟代碳酸亚乙酯(FEC)电解质的添加剂来降低其与锂金属的结合能。。由于NO的聚集结构3 -离子及其在一次Li参与+溶剂化鞘,丰富的李2 O,黎3 N,和Lin X öÿ形成在所得到的SEI谷物,除了从PF的减少的均匀分布的LiF 6 -离子。SEI(高界面能)与Li的弱结合可以有效地促进Li沿着SEI / Li界面扩散,并防止Li树枝状晶体渗入SEI。其结果是,我们设计的碳酸盐电解质使得Li阳极以实现高的Li镀/汽提的99.55%库仑效率(1毫安厘米-2,1.0毫安厘米-2)和电解质还使李||的LiNi 0.8有限公司0.1 Mn 0.1 O 2(NMC811)全电池(2.5 mAh cm -2)在200个循环后保留其初始容量的75%,并具有99.83%的出色CE。
更新日期:2020-11-09
中文翻译:

用于碳酸盐电解质中高级锂金属电池的无机丰富固体电解质中间相
在碳酸盐电解质中,在锂金属阳极表面上形成的有机-无机固体电解质中间相(SEI)与Li牢固结合并经历与Li相同的体积变化,因此在电镀/剥离循环中会经历连续的开裂/重整。此处,在锂金属表面设计了一种富含无机物的SEI,通过将4 m浓缩的LiNO 3溶解在二甲基亚砜(DMSO)中作为氟代碳酸亚乙酯(FEC)电解质的添加剂来降低其与锂金属的结合能。。由于NO的聚集结构3 -离子及其在一次Li参与+溶剂化鞘,丰富的李2 O,黎3 N,和Lin X öÿ形成在所得到的SEI谷物,除了从PF的减少的均匀分布的LiF 6 -离子。SEI(高界面能)与Li的弱结合可以有效地促进Li沿着SEI / Li界面扩散,并防止Li树枝状晶体渗入SEI。其结果是,我们设计的碳酸盐电解质使得Li阳极以实现高的Li镀/汽提的99.55%库仑效率(1毫安厘米-2,1.0毫安厘米-2)和电解质还使李||的LiNi 0.8有限公司0.1 Mn 0.1 O 2(NMC811)全电池(2.5 mAh cm -2)在200个循环后保留其初始容量的75%,并具有99.83%的出色CE。