当前位置:
X-MOL 学术
›
Adv. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A Solvent‐Exchange Strategy to Regulate Noncovalent Interactions for Strong and Antiswelling Hydrogels
Advanced Materials ( IF 27.4 ) Pub Date : 2020-11-09 , DOI: 10.1002/adma.202004579 Liju Xu 1, 2 , Shan Gao 3 , Qirui Guo 1, 2 , Chen Wang 1, 2 , Yan Qiao 1, 2 , Dong Qiu 1, 2
Advanced Materials ( IF 27.4 ) Pub Date : 2020-11-09 , DOI: 10.1002/adma.202004579 Liju Xu 1, 2 , Shan Gao 3 , Qirui Guo 1, 2 , Chen Wang 1, 2 , Yan Qiao 1, 2 , Dong Qiu 1, 2
Affiliation
Physical hydrogels from existing polymers consisting of noncovalent interacting networks are highly desired due to their well‐controlled compositions and environmental friendliness; and therefore, applied as adhesives, artificial tissues, and soft machines. Nevertheless, these gels have suffered from weak mechanical strength and low water resistance. Current methodologies used to fabricate these hydrogels mainly involve the freezing–thawing process (cryogels), which are complicated in preparation and short in adjustment of polymer conformation. Here, taking the merits of noncovalent bonds in adjustability and reversibility, a solvent‐exchange strategy is developed to construct a class of exogels. Based on the exchange from a good solvent subsequently to a poor one, the intra‐ and interpolymer interactions are initially suppressed and then recovered, resulting in dissolving and cross‐linking to polymers, respectively. Key to this approach is the good solvent, which favors of a stretched polymer conformation to homogenize the network, forming cross‐linked hydrogel networks with remarkable stiffness, toughness, antiswelling properties, and thus underwater adhesive performance. The exogels highlight a facile but highly effective strategy of turning the solvent and consequently the noncovalent interactions to achieve the rational design of enhanced hydrogels and hydrogel‐based soft materials.
中文翻译:
调节强反溶胀水凝胶非共价相互作用的溶剂交换策略
人们迫切希望使用由非共价相互作用网络组成的现有聚合物制成的物理水凝胶,因为它们的成分控制得当且对环境友好。因此,可以用作粘合剂,人造纸和软机。然而,这些凝胶具有弱的机械强度和低的耐水性。目前用于制造这些水凝胶的方法主要涉及冻融过程(cryogels),其制备过程复杂且聚合物构象的调节不足。在这里,利用非共价键在可调节性和可逆性方面的优点,开发了一种溶剂交换策略来构造一类外齿。根据良好溶剂到不良溶剂的交换,聚合物内和聚合物间的相互作用最初被抑制,然后被恢复,分别导致聚合物溶解和交联。这种方法的关键是良好的溶剂,该溶剂有利于拉伸聚合物的构象,以使网络均质,形成具有显着的刚度,韧性,抗溶胀性和水下粘合性能的交联水凝胶网络。轮廓突出了一种轻松但高效的转向溶剂的策略,因此非共价相互作用可实现增强型水凝胶和基于水凝胶的软质材料的合理设计。形成具有显着的刚度,韧性,抗溶胀特性的交联水凝胶网络,从而具有水下粘合性能。轮廓突出了一种轻松但高效的转向溶剂的策略,因此非共价相互作用可实现增强型水凝胶和基于水凝胶的软质材料的合理设计。形成具有显着的刚度,韧性,抗溶胀特性的交联水凝胶网络,从而具有水下粘合性能。轮廓突出了一种轻松但高效的转向溶剂的策略,因此非共价相互作用可实现增强型水凝胶和基于水凝胶的软质材料的合理设计。
更新日期:2020-12-28
中文翻译:
调节强反溶胀水凝胶非共价相互作用的溶剂交换策略
人们迫切希望使用由非共价相互作用网络组成的现有聚合物制成的物理水凝胶,因为它们的成分控制得当且对环境友好。因此,可以用作粘合剂,人造纸和软机。然而,这些凝胶具有弱的机械强度和低的耐水性。目前用于制造这些水凝胶的方法主要涉及冻融过程(cryogels),其制备过程复杂且聚合物构象的调节不足。在这里,利用非共价键在可调节性和可逆性方面的优点,开发了一种溶剂交换策略来构造一类外齿。根据良好溶剂到不良溶剂的交换,聚合物内和聚合物间的相互作用最初被抑制,然后被恢复,分别导致聚合物溶解和交联。这种方法的关键是良好的溶剂,该溶剂有利于拉伸聚合物的构象,以使网络均质,形成具有显着的刚度,韧性,抗溶胀性和水下粘合性能的交联水凝胶网络。轮廓突出了一种轻松但高效的转向溶剂的策略,因此非共价相互作用可实现增强型水凝胶和基于水凝胶的软质材料的合理设计。形成具有显着的刚度,韧性,抗溶胀特性的交联水凝胶网络,从而具有水下粘合性能。轮廓突出了一种轻松但高效的转向溶剂的策略,因此非共价相互作用可实现增强型水凝胶和基于水凝胶的软质材料的合理设计。形成具有显着的刚度,韧性,抗溶胀特性的交联水凝胶网络,从而具有水下粘合性能。轮廓突出了一种轻松但高效的转向溶剂的策略,因此非共价相互作用可实现增强型水凝胶和基于水凝胶的软质材料的合理设计。