Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Understanding CO2/CH4 Separation in Pristine and Defective 2D MOF CuBDC Nanosheets via Nonequilibrium Molecular Dynamics
Langmuir ( IF 3.7 ) Pub Date : 2020-11-08 , DOI: 10.1021/acs.langmuir.0c02434 Merilent T. Kallo 1 , Matthew J. Lennox 1
Langmuir ( IF 3.7 ) Pub Date : 2020-11-08 , DOI: 10.1021/acs.langmuir.0c02434 Merilent T. Kallo 1 , Matthew J. Lennox 1
Affiliation
The separation of CO2/CH4 gas mixtures is a key challenge for the energy sector and is essential for the efficient upgrading of natural gas and biogas. A new emerging field, that of metal–organic framework nanosheets (MONs), has shown the potential to outperform conventional separation methods and bulk metal–organic frameworks (MOFs). In this work, we model the CO2/CH4 separation in both defect-free and defective 2D CuBDC nanosheets and compare their performance with the bulk CuBDC MOF and experimental data. We report the results of external force nonequilibrium molecular dynamics (EF-NEMD) for pure components and binary mixtures. The EF-NEMD simulations reveal a pore blocking separation mechanism, in which the CO2 molecules occupy adsorption sites and significantly restrict the diffusion of CH4. The MON structure achieves a better selectivity of CO2 over CH4 compared to the bulk CuBDC MOF which is due to the mass transfer resistance of the methane molecules on the surface of the nanosheet. Our results show that it is essential to consider the real mixture in these systems rather than relying solely on pure component data and ideal selectivity. Furthermore, the separation is shown to be sensitive to the presence of missing linker defects in the nanosheets. Only 10% of missing linkers result in nonselective nanosheets. Hence, the importance of a defect-free synthetic method for CuBDC nanosheets is underlined.
中文翻译:
通过非平衡分子动力学了解二维和原始2D MOF CuBDC纳米片中CO 2 / CH 4的分离
CO 2 / CH 4气体混合物的分离是能源领域的关键挑战,对于天然气和沼气的有效升级至关重要。金属有机框架纳米片(MONs)的一个新兴领域显示出超越传统分离方法和金属有机大分子框架(MOF)的潜力。在这项工作中,我们对无缺陷和有缺陷的二维CuBDC纳米片中的CO 2 / CH 4分离进行建模,并将其性能与大量CuBDC MOF和实验数据进行比较。我们报告纯组分和二元混合物的外力非平衡分子动力学(EF-NEMD)的结果。EF-NEMD模拟揭示了孔隙阻塞分离机制,其中CO 2分子占据吸附位点并显着限制CH 4的扩散。与本体CuBDC MOF相比,MON结构相对于CH 4具有更好的CO 2选择性,这是由于纳米片表面上甲烷分子的传质阻力所致。我们的结果表明,至关重要的是要考虑这些系统中的真实混合物,而不是仅依赖于纯组分数据和理想的选择性。此外,显示分离对纳米片中缺少的接头缺陷的存在是敏感的。只有10%的缺失接头会产生非选择性纳米片。因此,强调了CuBDC纳米片无缺陷合成方法的重要性。
更新日期:2020-11-17
中文翻译:
通过非平衡分子动力学了解二维和原始2D MOF CuBDC纳米片中CO 2 / CH 4的分离
CO 2 / CH 4气体混合物的分离是能源领域的关键挑战,对于天然气和沼气的有效升级至关重要。金属有机框架纳米片(MONs)的一个新兴领域显示出超越传统分离方法和金属有机大分子框架(MOF)的潜力。在这项工作中,我们对无缺陷和有缺陷的二维CuBDC纳米片中的CO 2 / CH 4分离进行建模,并将其性能与大量CuBDC MOF和实验数据进行比较。我们报告纯组分和二元混合物的外力非平衡分子动力学(EF-NEMD)的结果。EF-NEMD模拟揭示了孔隙阻塞分离机制,其中CO 2分子占据吸附位点并显着限制CH 4的扩散。与本体CuBDC MOF相比,MON结构相对于CH 4具有更好的CO 2选择性,这是由于纳米片表面上甲烷分子的传质阻力所致。我们的结果表明,至关重要的是要考虑这些系统中的真实混合物,而不是仅依赖于纯组分数据和理想的选择性。此外,显示分离对纳米片中缺少的接头缺陷的存在是敏感的。只有10%的缺失接头会产生非选择性纳米片。因此,强调了CuBDC纳米片无缺陷合成方法的重要性。