当前位置:
X-MOL 学术
›
Chem. Rev.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Magnetic Skyrmion Materials
Chemical Reviews ( IF 51.4 ) Pub Date : 2020-11-08 , DOI: 10.1021/acs.chemrev.0c00297 Yoshinori Tokura 1, 2, 3 , Naoya Kanazawa 1
Chemical Reviews ( IF 51.4 ) Pub Date : 2020-11-08 , DOI: 10.1021/acs.chemrev.0c00297 Yoshinori Tokura 1, 2, 3 , Naoya Kanazawa 1
Affiliation
Skyrmion, a concept originally proposed in particle physics half a century ago, can now find the most fertile field for its applicability, that is, the magnetic skyrmion realized in helimagnetic materials. The spin swirling vortex-like texture of the magnetic skyrmion can define the particle nature by topology; that is, all the constituent spin moments within the two-dimensional sheet wrap the sphere just one time. Such a topological nature of the magnetic skyrmion can lead to extraordinary metastability via topological protection and the driven motion with low electric-current excitation, which may promise future application to spintronics. The skyrmions in the magnetic materials frequently show up as the crystal lattice form, e.g., hexagonal lattice, but sometimes as isolated or independent particles. These skyrmions in magnets were initially found in acentric magnets, such as chiral, polar, and bilayered magnets endowed with antisymmetric spin exchange interaction, while the skyrmion host materials have been explored in a broader family of compounds including centrosymmetric magnets. This review describes the materials science and materials chemistry of magnetic skyrmions using the classification scheme of the skyrmion forming microscopic mechanisms. The emergent phenomena and functions mediated by skyrmions are described, including the generation of emergent magnetic and electric field by statics and dynamics of skrymions and the inherent magnetoelectric effect. The other important magnetic topological defects in two or three dimensions, such as biskyrmions, antiskyrmions, merons, and hedgehogs, are also reviewed in light of their interplay with the skyrmions.
中文翻译:
磁性Skyrmion材料
Skyrmion是半个世纪以前在粒子物理学中最初提出的概念,现在可以找到最肥沃的磁场,因为它具有适用性,即在螺旋磁性材料中实现的磁性skyrmion。磁天窗的自旋旋涡状纹理可以通过拓扑定义粒子的性质。也就是说,二维图纸中的所有构成自旋矩仅将球包裹一次。磁天文子的这种拓扑性质可以通过拓扑保护和低电流激励的驱动运动而导致非同寻常的亚稳态,这可能会有望在自旋电子学中得到应用。磁性材料中的天体离子经常显示为晶格形式,例如六边形晶格,但有时显示为孤立或独立的粒子。磁体中的这些Skyrmion最初是在非对称磁体中发现的,例如具有反对称自旋交换相互作用的手性,极性和双层磁体,而Skyrmion主体材料已在包括中心对称磁体在内的更广泛的化合物家族中得到了探索。这篇综述使用天rm离子形成微观机制的分类方案描述了磁天rm离子的材料科学和材料化学。描述了由天体离子介导的涌现现象和功能,包括通过离子的静力学和动力学以及固有的磁电效应产生涌现的磁场和电场。其他两维或三维重要的磁性拓扑缺陷,例如双毛,抗毛,瓜和刺猬,
更新日期:2020-11-08
中文翻译:
磁性Skyrmion材料
Skyrmion是半个世纪以前在粒子物理学中最初提出的概念,现在可以找到最肥沃的磁场,因为它具有适用性,即在螺旋磁性材料中实现的磁性skyrmion。磁天窗的自旋旋涡状纹理可以通过拓扑定义粒子的性质。也就是说,二维图纸中的所有构成自旋矩仅将球包裹一次。磁天文子的这种拓扑性质可以通过拓扑保护和低电流激励的驱动运动而导致非同寻常的亚稳态,这可能会有望在自旋电子学中得到应用。磁性材料中的天体离子经常显示为晶格形式,例如六边形晶格,但有时显示为孤立或独立的粒子。磁体中的这些Skyrmion最初是在非对称磁体中发现的,例如具有反对称自旋交换相互作用的手性,极性和双层磁体,而Skyrmion主体材料已在包括中心对称磁体在内的更广泛的化合物家族中得到了探索。这篇综述使用天rm离子形成微观机制的分类方案描述了磁天rm离子的材料科学和材料化学。描述了由天体离子介导的涌现现象和功能,包括通过离子的静力学和动力学以及固有的磁电效应产生涌现的磁场和电场。其他两维或三维重要的磁性拓扑缺陷,例如双毛,抗毛,瓜和刺猬,