当前位置:
X-MOL 学术
›
Hum. Brain Mapp.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A comprehensive study on electroencephalography and magnetoencephalography sensitivity to cortical and subcortical sources
Human Brain Mapping ( IF 3.5 ) Pub Date : 2020-11-06 , DOI: 10.1002/hbm.25272 Maria Carla Piastra 1, 2, 3 , Andreas Nüßing 1, 2 , Johannes Vorwerk 4 , Maureen Clerc 5, 6 , Christian Engwer 2, 7 , Carsten H Wolters 1, 8
Human Brain Mapping ( IF 3.5 ) Pub Date : 2020-11-06 , DOI: 10.1002/hbm.25272 Maria Carla Piastra 1, 2, 3 , Andreas Nüßing 1, 2 , Johannes Vorwerk 4 , Maureen Clerc 5, 6 , Christian Engwer 2, 7 , Carsten H Wolters 1, 8
Affiliation
Signal‐to‐noise ratio (SNR) maps are a good way to visualize electroencephalography (EEG) and magnetoencephalography (MEG) sensitivity. SNR maps extend the knowledge about the modulation of EEG and MEG signals by source locations and orientations and can therefore help to better understand and interpret measured signals as well as source reconstruction results thereof. Our work has two main objectives. First, we investigated the accuracy and reliability of EEG and MEG finite element method (FEM)‐based sensitivity maps for three different head models, namely an isotropic three and four‐compartment and an anisotropic six‐compartment head model. As a result, we found that ignoring the cerebrospinal fluid leads to an overestimation of EEG SNR values. Second, we examined and compared EEG and MEG SNR mappings for both cortical and subcortical sources and their modulation by source location and orientation. Our results for cortical sources show that EEG sensitivity is higher for radial and deep sources and MEG for tangential ones, which are the majority of sources. As to the subcortical sources, we found that deep sources with sufficient tangential source orientation are recordable by the MEG. Our work, which represents the first comprehensive study where cortical and subcortical sources are considered in highly detailed FEM‐based EEG and MEG SNR mappings, sheds a new light on the sensitivity of EEG and MEG and might influence the decision of brain researchers or clinicians in their choice of the best modality for their experiment or diagnostics, respectively.
中文翻译:
脑电图和脑磁图对皮质和皮质下源敏感性的综合研究
信噪比 (SNR) 图是可视化脑电图 (EEG) 和脑磁图 (MEG) 灵敏度的好方法。SNR 图扩展了有关 EEG 和 MEG 信号通过源位置和方向调制的知识,因此可以帮助更好地理解和解释测量信号及其源重建结果。我们的工作有两个主要目标。首先,我们研究了三种不同头部模型(即各向同性三室和四室以及各向异性六室头部模型)基于 EEG 和 MEG 有限元法 (FEM) 的灵敏度图的准确性和可靠性。结果,我们发现忽略脑脊液会导致脑电图信噪比值的高估。其次,我们检查并比较了皮层和皮层下源的 EEG 和 MEG SNR 映射及其按源位置和方向的调制。我们对皮质源的结果表明,对于径向源和深层源,EEG 敏感性较高,而对于切向源(这是大多数源),MEG 敏感性较高。对于皮层下源,我们发现具有足够切向源方向的深层源可以被 MEG 记录。我们的工作代表了第一项在高度详细的基于 FEM 的 EEG 和 MEG SNR 映射中考虑皮质和皮质下源的综合研究,为 EEG 和 MEG 的敏感性提供了新的视角,并可能影响大脑研究人员或临床医生的决策他们分别选择最佳的实验或诊断方式。
更新日期:2020-11-06
中文翻译:
脑电图和脑磁图对皮质和皮质下源敏感性的综合研究
信噪比 (SNR) 图是可视化脑电图 (EEG) 和脑磁图 (MEG) 灵敏度的好方法。SNR 图扩展了有关 EEG 和 MEG 信号通过源位置和方向调制的知识,因此可以帮助更好地理解和解释测量信号及其源重建结果。我们的工作有两个主要目标。首先,我们研究了三种不同头部模型(即各向同性三室和四室以及各向异性六室头部模型)基于 EEG 和 MEG 有限元法 (FEM) 的灵敏度图的准确性和可靠性。结果,我们发现忽略脑脊液会导致脑电图信噪比值的高估。其次,我们检查并比较了皮层和皮层下源的 EEG 和 MEG SNR 映射及其按源位置和方向的调制。我们对皮质源的结果表明,对于径向源和深层源,EEG 敏感性较高,而对于切向源(这是大多数源),MEG 敏感性较高。对于皮层下源,我们发现具有足够切向源方向的深层源可以被 MEG 记录。我们的工作代表了第一项在高度详细的基于 FEM 的 EEG 和 MEG SNR 映射中考虑皮质和皮质下源的综合研究,为 EEG 和 MEG 的敏感性提供了新的视角,并可能影响大脑研究人员或临床医生的决策他们分别选择最佳的实验或诊断方式。