当前位置:
X-MOL 学术
›
Adv. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Synergistic Optimization Enables Large‐Area Flexible Organic Solar Cells to Maintain over 98% PCE of the Small‐Area Rigid Devices
Advanced Materials ( IF 27.4 ) Pub Date : 2020-11-05 , DOI: 10.1002/adma.202005153 Guodong Wang 1, 2 , Jianqi Zhang 1 , Chen Yang 1 , Yuheng Wang 1, 3 , Yi Xing 1, 4 , Muhammad Abdullah Adil 1 , Yang Yang 1 , Lijun Tian 5 , Ming Su 5 , Wuqiang Shang 5 , Kun Lu 1 , Zhigang Shuai 2 , Zhixiang Wei 1
Advanced Materials ( IF 27.4 ) Pub Date : 2020-11-05 , DOI: 10.1002/adma.202005153 Guodong Wang 1, 2 , Jianqi Zhang 1 , Chen Yang 1 , Yuheng Wang 1, 3 , Yi Xing 1, 4 , Muhammad Abdullah Adil 1 , Yang Yang 1 , Lijun Tian 5 , Ming Su 5 , Wuqiang Shang 5 , Kun Lu 1 , Zhigang Shuai 2 , Zhixiang Wei 1
Affiliation
Slot‐die coating is generally regarded as the most effective large‐scale methodology for the fabrication of organic solar cells (OSCs). However, the corresponding device performance significantly lags behind spin‐coated devices. Herein, the active layer morphology, flexible substrate properties, and the processing temperature are optimized synergistically to obtain high power conversion efficiency (PCE) for both the flexible single cells and the modules. As a result, the 1 cm2 flexible devices produce an excellent PCE of 12.16% as compared to 12.37% for the spin‐coated small‐area (0.04 cm2) rigid devices. Likewise, for modules with an area of 25 cm2, an extraordinary PCE of 10.09% is observed. Hence, efficiency losses associated with the upscaling are significantly reduced by the synergistic optimization. Moreover, after 1000 bending cycles at a bending radius of 10 mm, the flexible devices still produce over 99% of their initial PCE, whereas after being stored for over 6000 h in a glove box, the PCE reaches 103% of its initial value, indicating excellent device flexibility as well as superior shelf stability. These results, thus, are a promising confirmation the great potential for upscaling of large‐area OSCs in the near future.
中文翻译:
协同优化使大面积柔性有机太阳能电池能够维持小面积刚性设备98%以上的PCE
缝模涂布通常被认为是制造有机太阳能电池(OSC)的最有效的大规模方法。但是,相应的设备性能大大落后于旋涂设备。在本文中,协同地优化了有源层的形态,柔性基板的特性以及处理温度,从而为柔性单电池和模块两者都获得了高功率转换效率(PCE)。结果,1 cm 2的柔性设备产生了12.16%的出色PCE,而旋涂小面积(0.04 cm 2)刚性设备的PCE则为12.37%。同样,对于面积为25 cm 2的模块,观察到异常PCE为10.09%。因此,通过协同优化显着减少了与升级相关的效率损失。此外,在以10 mm的弯曲半径弯曲1000次之后,这些柔性设备仍会产生其原始PCE的99%以上,而在手套箱中存放6000 h以上后,该PCE会达到其初始值的103%,表明出色的设备灵活性以及出色的货架稳定性。因此,这些结果有希望地证实,在不久的将来,大型区域OSC的升级潜力巨大。
更新日期:2020-12-08
中文翻译:
协同优化使大面积柔性有机太阳能电池能够维持小面积刚性设备98%以上的PCE
缝模涂布通常被认为是制造有机太阳能电池(OSC)的最有效的大规模方法。但是,相应的设备性能大大落后于旋涂设备。在本文中,协同地优化了有源层的形态,柔性基板的特性以及处理温度,从而为柔性单电池和模块两者都获得了高功率转换效率(PCE)。结果,1 cm 2的柔性设备产生了12.16%的出色PCE,而旋涂小面积(0.04 cm 2)刚性设备的PCE则为12.37%。同样,对于面积为25 cm 2的模块,观察到异常PCE为10.09%。因此,通过协同优化显着减少了与升级相关的效率损失。此外,在以10 mm的弯曲半径弯曲1000次之后,这些柔性设备仍会产生其原始PCE的99%以上,而在手套箱中存放6000 h以上后,该PCE会达到其初始值的103%,表明出色的设备灵活性以及出色的货架稳定性。因此,这些结果有希望地证实,在不久的将来,大型区域OSC的升级潜力巨大。