当前位置: X-MOL 学术J. Am. Chem. Soc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Reducing CO2 to HCO2– at Mild Potentials: Lessons from Formate Dehydrogenase
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2020-11-03 , DOI: 10.1021/jacs.0c07965
Jenny Y. Yang 1 , Tyler A. Kerr 1 , Xinran S. Wang 1 , Jeffrey M. Barlow 1
Affiliation  

The catalytic reduction of CO2 to HCO2- requires a formal transfer of a hydride (two electrons, one proton). Synthetic approaches for inorganic molecular catalysts have exclusively relied on classic metal hydrides, where the proton and electrons originate from the metal (via heterolytic cleavage of an M-H bond). An analysis of the scaling relationships that exist in classic metal hydrides reveal that hydride donors sufficiently hydridic to perform CO2 reduction are only accessible at very reducing electrochemical potentials, which is consistent with known synthetic electrocatalysts. By comparison, the formate dehydrogenase enzymes operate at relatively mild potentials. In contrast to reported synthetic catalysts, none of the major mechanistic proposals for hydride transfer in formate dehydrogenase proceed through a classic metal hydride. Instead, they invoke formal hydride transfer from an orthogonal or bidirectional mechanism, where the proton and electrons are not colocated. We discuss the thermodynamic advantages of this approach for favoring CO2 reduction at mild potentials, along with guidelines for replicating this strategy in synthetic systems.

中文翻译:

将 CO2 还原为 HCO2——在温和的潜力:甲酸脱氢酶的经验教训

CO2 催化还原为 HCO2- 需要氢化物的正式转移(两个电子,一个质子)。无机分子催化剂的合成方法完全依赖于经典的金属氢化物,其中质子和电子来自金属(通过 MH 键的异裂裂解)。对经典金属氢化物中存在的比例关系的分析表明,只有在非常还原的电化学电位下才能获得足够氢化以进行 CO2 还原的氢化物供体,这与已知的合成电催化剂一致。相比之下,甲酸脱氢酶在相对温和的电位下运行。与报道的合成催化剂相比,甲酸脱氢酶中氢化物转移的主要机制都没有通过经典的金属氢化物进行。反而,它们从正交或双向机制调用正式的氢化物转移,其中质子和电子不在同一位置。我们讨论了这种方法在温和潜力下有利于 CO2 还原的热力学优势,以及在合成系统中复制这种策略的指导方针。
更新日期:2020-11-03
down
wechat
bug