当前位置:
X-MOL 学术
›
J. Phys. Chem. C
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
High Rate Transfer Mechanism of Lithium Ions in Lithium–Tin and Lithium–Indium Alloys for Lithium Batteries
The Journal of Physical Chemistry C ( IF 3.3 ) Pub Date : 2020-11-02 , DOI: 10.1021/acs.jpcc.0c07880 Jiale Qu 1 , Jiewen Xiao 1 , Tianshuai Wang 1 , Dominik Legut 2 , Qianfan Zhang 1
The Journal of Physical Chemistry C ( IF 3.3 ) Pub Date : 2020-11-02 , DOI: 10.1021/acs.jpcc.0c07880 Jiale Qu 1 , Jiewen Xiao 1 , Tianshuai Wang 1 , Dominik Legut 2 , Qianfan Zhang 1
Affiliation
The lithium–tin alloy electrode, as an artificial solid–electrolyte interphase (SEI) material with outstanding electrochemical properties, is promising to realize advanced next-generation lithium batteries. Experimental explorations on Li–Sn alloy have already achieved great success, while theoretical understanding on the mechanism of lithium-ion transport is still lacking. In this work, we carried out first-principles simulations and developed a theoretical methodology to reveal how a lithium ion diffuses in different lithium–tin phases and further elaborated the origin of low diffusion barriers. The simulation results indicate that two kinds of diffusion modes, interstitial and vacancy diffusion, will compete with each other with the increase in lithium concentration. Furthermore, the underlying mechanisms of direct hopping and coordinate process are also different in different Li–Sn/In phases. It is interesting to discover that during the lithiation process of alloy phases, the high-rate transport channel will gradually transform from the interstitial direct-hopping to vacancy mechanism and finally to the interstitial knock-off mechanism. This work provides a thorough theoretical understanding on lithium-ion transportation, further opening up the possibility of synthesizing or modifying SEI materials with enhanced Li conductivity in novel Li-ion battery designs.
中文翻译:
锂电池锂锡和锂铟合金中锂离子的高速率传递机理
锂锡合金电极作为具有优异电化学性能的人造固电解质间相(SEI)材料,有望实现先进的下一代锂电池。Li-Sn合金的实验探索已经取得了巨大的成功,而对锂离子迁移机理的理论认识仍然缺乏。在这项工作中,我们进行了第一性原理模拟并开发了一种理论方法,以揭示锂离子如何在不同的锂锡相中扩散,并进一步阐述了低扩散势垒的起源。模拟结果表明,随着锂浓度的增加,间隙扩散和空位扩散这两种扩散模式将相互竞争。此外,在不同的Li-Sn / In阶段,直接跳跃和协调过程的潜在机制也不同。有趣的是,在合金相的锂化过程中,高速率输运通道将逐渐从间隙直接跳跃转变为空位机制,最后转变为间隙剥离机制。这项工作为锂离子的运输提供了透彻的理论理解,进一步开辟了在新颖的锂离子电池设计中以增强的锂电导率合成或改性SEI材料的可能性。高速率的运输渠道将逐渐从间质直接跳跃转变为空位机制,最后转变为间质敲除机制。这项工作为锂离子的运输提供了透彻的理论理解,进一步开辟了在新颖的锂离子电池设计中以增强的锂电导率合成或改性SEI材料的可能性。高速率的运输渠道将逐渐从间质直接跳跃转变为空位机制,最后转变为间质敲除机制。这项工作为锂离子的运输提供了透彻的理论理解,进一步开辟了在新颖的锂离子电池设计中以增强的锂电导率合成或改性SEI材料的可能性。
更新日期:2020-11-12
中文翻译:
锂电池锂锡和锂铟合金中锂离子的高速率传递机理
锂锡合金电极作为具有优异电化学性能的人造固电解质间相(SEI)材料,有望实现先进的下一代锂电池。Li-Sn合金的实验探索已经取得了巨大的成功,而对锂离子迁移机理的理论认识仍然缺乏。在这项工作中,我们进行了第一性原理模拟并开发了一种理论方法,以揭示锂离子如何在不同的锂锡相中扩散,并进一步阐述了低扩散势垒的起源。模拟结果表明,随着锂浓度的增加,间隙扩散和空位扩散这两种扩散模式将相互竞争。此外,在不同的Li-Sn / In阶段,直接跳跃和协调过程的潜在机制也不同。有趣的是,在合金相的锂化过程中,高速率输运通道将逐渐从间隙直接跳跃转变为空位机制,最后转变为间隙剥离机制。这项工作为锂离子的运输提供了透彻的理论理解,进一步开辟了在新颖的锂离子电池设计中以增强的锂电导率合成或改性SEI材料的可能性。高速率的运输渠道将逐渐从间质直接跳跃转变为空位机制,最后转变为间质敲除机制。这项工作为锂离子的运输提供了透彻的理论理解,进一步开辟了在新颖的锂离子电池设计中以增强的锂电导率合成或改性SEI材料的可能性。高速率的运输渠道将逐渐从间质直接跳跃转变为空位机制,最后转变为间质敲除机制。这项工作为锂离子的运输提供了透彻的理论理解,进一步开辟了在新颖的锂离子电池设计中以增强的锂电导率合成或改性SEI材料的可能性。