当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Luminescent, Wide-Band Gap Solar Cells with a Photovoltage up to 1.75 V through a Heterostructured Light-Absorbing Layer
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2020-11-03 , DOI: 10.1021/acsami.0c16032 Dingjian Zhou 1 , Jincheng Huang 2 , Huibo Yan 3 , Jianfeng Zhang 3 , Lei Lu 4 , Ping Xu 2, 3 , Guijun Li 2, 3
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2020-11-03 , DOI: 10.1021/acsami.0c16032 Dingjian Zhou 1 , Jincheng Huang 2 , Huibo Yan 3 , Jianfeng Zhang 3 , Lei Lu 4 , Ping Xu 2, 3 , Guijun Li 2, 3
Affiliation
The development of photovoltaic devices with a high output voltage offers great opportunities for emerging internet of things (IoT) sensors and low-power-consumption electronics. However, the photovoltage of solar cells is yet to satisfy the requirement of driving voltage for most applications. Here, we demonstrate a wide-band gap CsPbBr3-based solar cell with a heterostructured light absorber based on amino acid-modulated CsPbBr3 and CdSe quantum dots (QDs). Compared with the single absorbing layer device, the heterostructured device exhibits a low nonradiative recombination loss, which is strongly correlated to the high external electroluminescence of the device. In addition, in the heterostructured solar cells, carrier transfer from the perovskite to CdSe QDs induces the conduction band bending of CdSe QDs, leading to a large splitting of the quasi-Fermi levels. As a result, a remarkable photovoltage up to 1.75 V is achieved for the wide-band gap solar cells, representing an extremely low voltage deficit of 250 mV. Furthermore, the CsPbBr3-based solar cells exhibit a weak light intensity dependence, showing a photovoltage of 1.59 V under room light conditions. Our work not only provides an effective approach for the design of high-photovoltage solar cells but also paves the ways of using photovoltaic devices for various applications with low driving voltage schemes.
中文翻译:
通过异质结构光吸收层的光电压高达1.75 V的发光宽带隙太阳能电池
具有高输出电压的光伏设备的开发为新兴的物联网(IoT)传感器和低功耗电子产品提供了巨大的机会。然而,对于大多数应用而言,太阳能电池的光电压尚未满足驱动电压的要求。在这里,我们展示了一种基于宽带隙CsPbBr 3的太阳能电池,该电池具有基于氨基酸调节的CsPbBr 3的异质结构光吸收剂和CdSe量子点(QD)。与单吸收层器件相比,异质结构器件显示出低的非辐射复合损失,这与器件的高外部电致发光密切相关。另外,在异质结构的太阳能电池中,载流子从钙钛矿转移到CdSe QDs引起CdSe QDs的导带弯曲,从而导致准费米能级大范围分裂。结果,对于宽带隙太阳能电池而言,达到了高达1.75 V的显着光电压,这表明250 mV的极低电压差。此外,CsPbBr 3基太阳能电池表现出弱的光强度依赖性,在室内光照条件下的光电压为1.59V。我们的工作不仅为设计高光电压太阳能电池提供了一种有效的方法,而且为在低驱动电压方案的各种应用中使用光伏器件铺平了道路。
更新日期:2020-11-12
中文翻译:
通过异质结构光吸收层的光电压高达1.75 V的发光宽带隙太阳能电池
具有高输出电压的光伏设备的开发为新兴的物联网(IoT)传感器和低功耗电子产品提供了巨大的机会。然而,对于大多数应用而言,太阳能电池的光电压尚未满足驱动电压的要求。在这里,我们展示了一种基于宽带隙CsPbBr 3的太阳能电池,该电池具有基于氨基酸调节的CsPbBr 3的异质结构光吸收剂和CdSe量子点(QD)。与单吸收层器件相比,异质结构器件显示出低的非辐射复合损失,这与器件的高外部电致发光密切相关。另外,在异质结构的太阳能电池中,载流子从钙钛矿转移到CdSe QDs引起CdSe QDs的导带弯曲,从而导致准费米能级大范围分裂。结果,对于宽带隙太阳能电池而言,达到了高达1.75 V的显着光电压,这表明250 mV的极低电压差。此外,CsPbBr 3基太阳能电池表现出弱的光强度依赖性,在室内光照条件下的光电压为1.59V。我们的工作不仅为设计高光电压太阳能电池提供了一种有效的方法,而且为在低驱动电压方案的各种应用中使用光伏器件铺平了道路。