当前位置:
X-MOL 学术
›
Chem. Soc. Rev.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Internal catalysis for dynamic covalent chemistry applications and polymer science
Chemical Society Reviews ( IF 40.4 ) Pub Date : 2020-10-28 , DOI: 10.1039/d0cs00452a Filip Van Lijsebetten 1, 2, 3, 4, 5 , Joshua O. Holloway 1, 2, 3, 4, 5 , Johan M. Winne 3, 5, 6, 7, 8 , Filip E. Du Prez 1, 2, 3, 4, 5
Chemical Society Reviews ( IF 40.4 ) Pub Date : 2020-10-28 , DOI: 10.1039/d0cs00452a Filip Van Lijsebetten 1, 2, 3, 4, 5 , Joshua O. Holloway 1, 2, 3, 4, 5 , Johan M. Winne 3, 5, 6, 7, 8 , Filip E. Du Prez 1, 2, 3, 4, 5
Affiliation
Strong covalent chemical bonds that can also be reversed, cleaved or exchanged are the subject of so-called dynamic covalent chemistry (DCC). Applications range from classical protective groups in organic chemistry and cleavable linkers for solid phase synthesis, to more modern applications in dynamic compound libraries and adaptive materials. Interest in dynamic, reversible or responsive chemistries has risen in particular in the last few decades for the design and synthesis of new DCC-based polymer materials. Implementation of DCC in polymers yields materials with unique combinations of properties and in some cases even unprecedented properties for covalent materials, such as self-healing materials, covalent adaptable networks (CANs) and vitrimers. In particular, the incorporation of DCC in polymer materials aims to find a balance between a swift and triggerable reactivity, combined with a high degree of intrinsic robustness and stability. Applying harsh conditions, highly active catalysts or highly reactive bonding groups, as is done in classical DCC, is often not feasible or desirable, as it can damage the polymer's integrity, leading to loss of function and properties. In this context, so-called internally catalysed DCC platforms have started to receive more interest in this area. This approach relies on the relative proximity and orientation of common functional groups, which can influence a chemical exchange reaction in a subtle but significant way. This approach mimicks the strategies found in enzymic reactions, and is known in classical organic chemistry as neighbouring group participation (NGP). The use of internal catalysis or NGP within polymer material science has proven to be a highly attractive strategy. This tutorial review will outline examples showing the scope, advantages and pitfalls of using internal catalysis within different DCC applications, ranging from small molecules to dynamic polymer materials.
中文翻译:
用于动态共价化学应用和聚合物科学的内部催化
还可被逆转,切割或交换的强共价化学键是所谓的动态共价化学(DCC)的主题。应用范围从有机化学中的经典保护基团和用于固相合成的可裂解连接基,到动态化合物库和适应性材料的更现代应用。在过去的几十年中,对于动态,可逆或响应式化学的兴趣尤其是在设计和合成新的基于DCC的聚合物材料方面引起了人们的兴趣。在聚合物中实施DCC可以生产出具有独特性能组合的材料,在某些情况下,甚至对共价材料来说,甚至是前所未有的性能,例如自修复材料,共价适应性网络(CAN)和玻璃化单体。尤其是,在聚合物材料中加入DCC的目的是在快速反应性和可触发反应性之间寻求平衡,并具有高度的固有鲁棒性和稳定性。像在典型的DCC中一样,施加苛刻的条件,高活性催化剂或高反应性键合基团通常是不可行或不希望的,因为它会破坏聚合物的完整性,导致功能和性能丧失。在这种情况下,所谓的内部催化DCC平台已开始对此领域产生更多兴趣。这种方法依赖于常见官能团的相对接近度和方向,这可以以微妙但重要的方式影响化学交换反应。这种方法模仿了酶促反应中发现的策略,在古典有机化学中被称为邻群参与(NGP)。在聚合物材料科学中使用内部催化或NGP已被证明是极具吸引力的策略。本教程审查将概述一些示例,这些示例显示在不同的DCC应用程序中使用内部催化的范围,优势和陷阱,范围从小分子到动态聚合物材料。
更新日期:2020-11-03
中文翻译:
用于动态共价化学应用和聚合物科学的内部催化
还可被逆转,切割或交换的强共价化学键是所谓的动态共价化学(DCC)的主题。应用范围从有机化学中的经典保护基团和用于固相合成的可裂解连接基,到动态化合物库和适应性材料的更现代应用。在过去的几十年中,对于动态,可逆或响应式化学的兴趣尤其是在设计和合成新的基于DCC的聚合物材料方面引起了人们的兴趣。在聚合物中实施DCC可以生产出具有独特性能组合的材料,在某些情况下,甚至对共价材料来说,甚至是前所未有的性能,例如自修复材料,共价适应性网络(CAN)和玻璃化单体。尤其是,在聚合物材料中加入DCC的目的是在快速反应性和可触发反应性之间寻求平衡,并具有高度的固有鲁棒性和稳定性。像在典型的DCC中一样,施加苛刻的条件,高活性催化剂或高反应性键合基团通常是不可行或不希望的,因为它会破坏聚合物的完整性,导致功能和性能丧失。在这种情况下,所谓的内部催化DCC平台已开始对此领域产生更多兴趣。这种方法依赖于常见官能团的相对接近度和方向,这可以以微妙但重要的方式影响化学交换反应。这种方法模仿了酶促反应中发现的策略,在古典有机化学中被称为邻群参与(NGP)。在聚合物材料科学中使用内部催化或NGP已被证明是极具吸引力的策略。本教程审查将概述一些示例,这些示例显示在不同的DCC应用程序中使用内部催化的范围,优势和陷阱,范围从小分子到动态聚合物材料。