当前位置:
X-MOL 学术
›
J. Phys. Chem. Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Layer-Dependent Electron Transfer and Recombination Processes in MoS2/WSe2 Multilayer Heterostructures
The Journal of Physical Chemistry Letters ( IF 4.8 ) Pub Date : 2020-10-30 , DOI: 10.1021/acs.jpclett.0c02952 Shu-Wen Zheng 1 , Hai-Yu Wang 1 , Lei Wang 1 , Hai Wang 1 , Hong-Bo Sun 1, 2
The Journal of Physical Chemistry Letters ( IF 4.8 ) Pub Date : 2020-10-30 , DOI: 10.1021/acs.jpclett.0c02952 Shu-Wen Zheng 1 , Hai-Yu Wang 1 , Lei Wang 1 , Hai Wang 1 , Hong-Bo Sun 1, 2
Affiliation
Understanding and controlling the charge transfer processes of two-dimensional (2D) materials are fundamental for the optimized device performance based on 2D semiconductors and heterostructures. The charge transfer rate is very robust in transition metal disulfide (TMD) heterostructures with type II band alignments, which can be manipulated by intercalating a dielectric layer like hBN to isolate the donor and acceptor monolayers. This study shows that there is an alternative way to change the electron transfer and recombination rates in the case of nLMoS2/mLWSe2 multilayer heterostructures, where the donor–acceptor distance is maintained, but the rate of electron transfer is strongly layer dependent and shows asymmetry for the layer number of donor and acceptor monolayers. Especially, the 1LMoS2/2LWSe2 heterostructure slows electron transfer and charge recombination rates ∼2.3 and ∼12 times that of the 1LMoS2/1LWSe2 heterostructure, respectively, which have been competitive with that in the 1LMoS2/hBN/1LWSe2 heterostructure. From an application perspective, the noninterfacial electron transfer in which photogenerated electrons should across more than one atomically thin layer is not favorable due to the built-in electric field established by the initial interfacial electron transfer.
中文翻译:
MoS 2 / WSe 2多层异质结构中与层有关的电子转移和复合过程
理解和控制二维(2D)材料的电荷转移过程是基于2D半导体和异质结构优化器件性能的基础。在具有II型能带对准的过渡金属二硫化物(TMD)异质结构中,电荷转移速率非常稳定,可以通过插入介电层(如hBN)来隔离施主和受主单层,从而对其进行操纵。这项研究表明,在nLMoS 2 / mLWSe 2的情况下,存在另一种改变电子转移和复合速率的方法多层异质结构,其中供体-受体的距离保持不变,但电子传递的速率与层有很大关系,并且显示出供体和受体单层的层数不对称。特别是,1LMoS 2 / 2LWSe 2异质结构的电子传递和电荷复合速率分别是1LMoS 2 / 1LWSe 2异质结构的2.3和12倍,与1LMoS 2 / hBN / 1LWSe 2具有竞争性异质结构。从应用的角度来看,由于初始界面电子传递建立的内置电场,光生电子应跨越一个以上原子薄层的非界面电子传递是不利的。
更新日期:2020-11-19
中文翻译:
MoS 2 / WSe 2多层异质结构中与层有关的电子转移和复合过程
理解和控制二维(2D)材料的电荷转移过程是基于2D半导体和异质结构优化器件性能的基础。在具有II型能带对准的过渡金属二硫化物(TMD)异质结构中,电荷转移速率非常稳定,可以通过插入介电层(如hBN)来隔离施主和受主单层,从而对其进行操纵。这项研究表明,在nLMoS 2 / mLWSe 2的情况下,存在另一种改变电子转移和复合速率的方法多层异质结构,其中供体-受体的距离保持不变,但电子传递的速率与层有很大关系,并且显示出供体和受体单层的层数不对称。特别是,1LMoS 2 / 2LWSe 2异质结构的电子传递和电荷复合速率分别是1LMoS 2 / 1LWSe 2异质结构的2.3和12倍,与1LMoS 2 / hBN / 1LWSe 2具有竞争性异质结构。从应用的角度来看,由于初始界面电子传递建立的内置电场,光生电子应跨越一个以上原子薄层的非界面电子传递是不利的。