当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Zincate-Blocking-Functionalized Polysulfone Separators for Secondary Zn–MnO2 Batteries
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2020-10-29 , DOI: 10.1021/acsami.0c14143
Igor V. Kolesnichenko 1 , David J. Arnot 1 , Matthew B. Lim 2 , Gautam G. Yadav 3 , Michael Nyce 4 , Jinchao Huang 3 , Sanjoy Banerjee 3, 4 , Timothy N. Lambert 1
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2020-10-29 , DOI: 10.1021/acsami.0c14143
Igor V. Kolesnichenko 1 , David J. Arnot 1 , Matthew B. Lim 2 , Gautam G. Yadav 3 , Michael Nyce 4 , Jinchao Huang 3 , Sanjoy Banerjee 3, 4 , Timothy N. Lambert 1
Affiliation
![]() |
Alkaline zinc–manganese dioxide (Zn–MnO2) batteries are well suited for grid storage applications because of their inherently safe, aqueous electrolyte and established materials supply chain, resulting in low production costs. With recent advances in the development of Cu/Bi-stabilized birnessite cathodes capable of the full 2-electron capacity equivalent of MnO2 (617 mA h/g), there is a need for selective separators that prevent zincate (Zn(OH)4)2– transport from the anode to the cathode during cycling, as this electrode system fails in the presence of dissolved zinc. Herein, we present the synthesis of N-butylimidazolium-functionalized polysulfone (NBI-PSU)-based separators and evaluate their ability to selectively transport hydroxide over zincate. We then examine their impact on the cycling of high depth of discharge Zn/(Cu/Bi–MnO2) batteries when inserted in between the cathode and anode. Initially, we establish our membranes’ selectivity by performing zincate and hydroxide diffusion tests, showing a marked improvement in zincate-blocking (DZn (cm2/min): 0.17 ± 0.04 × 10–6 for 50-PSU, our most selective separator vs 2.0 ± 0.8 × 10–6 for Cellophane 350P00 and 5.7 ± 0.8 × 10–6 for Celgard 3501), while maintaining similar crossover rates for hydroxide (DOH (cm2/min): 9.4 ± 0.1 × 10–6 for 50-PSU vs 17 ± 0.5 × 10–6 for Cellophane 350P00 and 6.7 ± 0.6 × 10–6 for Celgard 3501). We then implement our membranes into cells and observe an improvement in cycle life over control cells containing only the commercial separators (cell lifetime extended from 21 to 79 cycles).
中文翻译:
用于二次Zn–MnO 2电池的锌酸盐封闭功能化聚砜隔板
碱性锌-二氧化锰(Zn-MnO 2)电池因其固有的安全性,水性电解质和已建立的材料供应链而非常适合于网格存储应用,从而降低了生产成本。随着能够实现MnO 2的全2电子容量当量(617 mA h / g)的Cu / Bi稳定的水钠锰矿阴极的最新发展,需要防止锌酸盐(Zn(OH)4)2 –在循环过程中从阳极到阴极的传输,因为在溶解的锌存在下该电极系统会失效。在这里,我们介绍N的合成基于丁基咪唑鎓官能化聚砜(NBI-PSU)的隔板,并评估了其选择性地将氢氧化物转运到锌酸盐上的能力。然后,我们研究了它们插入到阴极和阳极之间后,对高深度放电Zn /(Cu / Bi-MnO 2)电池循环的影响。最初,我们通过进行锌酸盐和氢氧化物扩散测试来确定膜的选择性,显示出锌酸盐阻滞性的显着改善(D Zn(cm 2 / min):对于50-PSU,我们的选择性最高的分离器,D Zn(cm 2 / min):0.17±0.04×10 –6与玻璃纸350P00的2.0±0.8×10 –6和Celgard 3501的5.7±0.8×10 –6),同时保持类似的氢氧化物交叉速率(DOH(cm 2 / min):对于50-PSU,为9.4±0.1×10 –6;对于玻璃纸350P00,为17±0.5×10 –6;对于Celgard 3501,为6.7±0.6×10 –6)。然后,我们将膜放入细胞中,并观察到与仅包含商用隔板的对照细胞相比,细胞的循环寿命有所改善(细胞寿命从21个循环延长至79个循环)。
更新日期:2020-11-12
中文翻译:

用于二次Zn–MnO 2电池的锌酸盐封闭功能化聚砜隔板
碱性锌-二氧化锰(Zn-MnO 2)电池因其固有的安全性,水性电解质和已建立的材料供应链而非常适合于网格存储应用,从而降低了生产成本。随着能够实现MnO 2的全2电子容量当量(617 mA h / g)的Cu / Bi稳定的水钠锰矿阴极的最新发展,需要防止锌酸盐(Zn(OH)4)2 –在循环过程中从阳极到阴极的传输,因为在溶解的锌存在下该电极系统会失效。在这里,我们介绍N的合成基于丁基咪唑鎓官能化聚砜(NBI-PSU)的隔板,并评估了其选择性地将氢氧化物转运到锌酸盐上的能力。然后,我们研究了它们插入到阴极和阳极之间后,对高深度放电Zn /(Cu / Bi-MnO 2)电池循环的影响。最初,我们通过进行锌酸盐和氢氧化物扩散测试来确定膜的选择性,显示出锌酸盐阻滞性的显着改善(D Zn(cm 2 / min):对于50-PSU,我们的选择性最高的分离器,D Zn(cm 2 / min):0.17±0.04×10 –6与玻璃纸350P00的2.0±0.8×10 –6和Celgard 3501的5.7±0.8×10 –6),同时保持类似的氢氧化物交叉速率(DOH(cm 2 / min):对于50-PSU,为9.4±0.1×10 –6;对于玻璃纸350P00,为17±0.5×10 –6;对于Celgard 3501,为6.7±0.6×10 –6)。然后,我们将膜放入细胞中,并观察到与仅包含商用隔板的对照细胞相比,细胞的循环寿命有所改善(细胞寿命从21个循环延长至79个循环)。