当前位置:
X-MOL 学术
›
Batteries Supercaps
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A Robust Coin‐Cell Design for In Situ Synchrotron‐based X‐Ray Powder Diffraction Analysis of Battery Materials
Batteries & Supercaps ( IF 5.1 ) Pub Date : 2020-10-22 , DOI: 10.1002/batt.202000218 Gemeng Liang 1 , Junnan Hao 1 , Anita M. D'Angelo 2 , Vanessa K. Peterson 1, 3 , Zaiping Guo 1 , Wei Kong Pang 1
Batteries & Supercaps ( IF 5.1 ) Pub Date : 2020-10-22 , DOI: 10.1002/batt.202000218 Gemeng Liang 1 , Junnan Hao 1 , Anita M. D'Angelo 2 , Vanessa K. Peterson 1, 3 , Zaiping Guo 1 , Wei Kong Pang 1
Affiliation
Understanding structure/chemistry‐function relationships of active battery materials is crucial for designing higher‐performance batteries, with in situ synchrotron‐based X‐ray powder diffraction widely employed to gain this understanding. Such measurements cannot be performed using a conventional cell, with modifications necessary for the X‐ray diffraction measurement, which unfortunately compromises battery performance and stability. Consequently, these measurements may not be representative of the typical behaviour of active materials in unmodified cells, particularly under more extreme operating conditions, such as at high voltage. Herein, we report a low‐cost, simple, and robust coin‐cell design enabling representative and typical cell performance during in situ X‐ray powder diffraction measurements, which we demonstrate for the well‐known high‐voltage electrode material LiNi0.5Mn1.5O4. In addition to excellent cell stability at high voltage, the modified cell delivered an electrochemical response comparable to the standard 2032‐type coin cell. This work paves an efficient way for battery researchers to perform high‐quality in situ structural analysis with synchrotron X‐ray radiation and will enable further insight into complex electrochemical processes in batteries.
中文翻译:
用于电池材料的基于原位同步加速器的X射线粉末衍射分析的稳健的币形电池设计
了解活性电池材料的结构/化学-功能关系对于设计更高性能的电池至关重要,广泛使用基于同步加速器的原位X射线粉末衍射来获得这种理解。此类测量无法使用常规电池进行,而必须进行X射线衍射测量的修改,这不幸地损害了电池的性能和稳定性。因此,这些测量值可能无法代表未修饰电池中活性物质的典型行为,特别是在更极端的工作条件下,例如在高压下。在此,我们报告了一种低成本,简单且坚固的纽扣电池设计,可在现场实现代表性和典型的电池性能X射线粉末衍射测量,我们用著名的高压电极材料LiNi 0.5 Mn 1.5 O 4进行了演示。除了在高压下具有出色的电池稳定性外,改进型电池还提供了与标准2032型纽扣电池相当的电化学响应。这项工作为电池研究人员利用同步加速器X射线辐射进行高质量的原位结构分析铺平了一条有效途径,并将使人们能够深入了解电池中的复杂电化学过程。
更新日期:2020-10-22
中文翻译:
用于电池材料的基于原位同步加速器的X射线粉末衍射分析的稳健的币形电池设计
了解活性电池材料的结构/化学-功能关系对于设计更高性能的电池至关重要,广泛使用基于同步加速器的原位X射线粉末衍射来获得这种理解。此类测量无法使用常规电池进行,而必须进行X射线衍射测量的修改,这不幸地损害了电池的性能和稳定性。因此,这些测量值可能无法代表未修饰电池中活性物质的典型行为,特别是在更极端的工作条件下,例如在高压下。在此,我们报告了一种低成本,简单且坚固的纽扣电池设计,可在现场实现代表性和典型的电池性能X射线粉末衍射测量,我们用著名的高压电极材料LiNi 0.5 Mn 1.5 O 4进行了演示。除了在高压下具有出色的电池稳定性外,改进型电池还提供了与标准2032型纽扣电池相当的电化学响应。这项工作为电池研究人员利用同步加速器X射线辐射进行高质量的原位结构分析铺平了一条有效途径,并将使人们能够深入了解电池中的复杂电化学过程。