当前位置:
X-MOL 学术
›
Adv. Funct. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
All‐Inorganic CsPbI3 Quantum Dot Solar Cells with Efficiency over 16% by Defect Control
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2020-10-21 , DOI: 10.1002/adfm.202005930 Linlin Zhang 1 , Cuiting Kang 1, 2 , Guizhi Zhang 1, 2 , Zhenxiao Pan 1, 2 , Zhaoshuai Huang 1, 2 , Shuaihang Xu 1, 2 , Huashang Rao 1, 2 , Hongbin Liu 3 , Shengfan Wu 4 , Xin Wu 4 , Xiaosong Li 3 , Zonglong Zhu 4 , Xinhua Zhong 1, 2 , Alex K.‐Y. Jen 4, 5
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2020-10-21 , DOI: 10.1002/adfm.202005930 Linlin Zhang 1 , Cuiting Kang 1, 2 , Guizhi Zhang 1, 2 , Zhenxiao Pan 1, 2 , Zhaoshuai Huang 1, 2 , Shuaihang Xu 1, 2 , Huashang Rao 1, 2 , Hongbin Liu 3 , Shengfan Wu 4 , Xin Wu 4 , Xiaosong Li 3 , Zonglong Zhu 4 , Xinhua Zhong 1, 2 , Alex K.‐Y. Jen 4, 5
Affiliation
All‐inorganic CsPbI3 quantum dots (QDs) have shown great potential in photovoltaic applications. However, their performance has been limited by defects and phase stability. Herein, an anion/cation synergy strategy to improve the structural stability of CsPbI3 QDs and reduce the pivotal iodine vacancy (VI) defect states is proposed. The Zn‐doped CsPbI3 (Zn:CsPbI3) QDs have been successfully synthesized employing ZnI2 as the dopant to provide Zn2+ and extra I−. Theoretical calculations and experimental results demonstrate that the Zn:CsPbI3 QDs show better thermodynamic stability and higher photoluminescence quantum yield (PLQY) compared to the pristine CsPbI3 QDs. The doping of Zn in CsPbI3 QDs increases the formation energy and Goldschmidt tolerance factor, thereby improving the thermodynamic stability. The additional I− helps to reduce the VI defects during the synthesis of CsPbI3 QDs, resulting in the higher PLQY. More importantly, the synergistic effect of Zn2+ and I− in CsPbI3 QDs can prevent the iodine loss during the fabrication of CsPbI3 QD film, inhibiting the formation of new VI defect states in the construction of solar cells. Consequently, the anion/cation synergy strategy affords the CsPbI3 quantum dot solar cells (QDSC) a power conversion efficiency over 16%, which is among the best efficiencies for perovskite QDSCs.
中文翻译:
通过缺陷控制实现效率超过16%的全无机CsPbI3量子点太阳能电池
全无机CsPbI 3量子点(QD)在光伏应用中显示出巨大潜力。但是,它们的性能受到缺陷和相稳定性的限制。本文提出了一种阴离子/阳离子协同策略,以提高CsPbI 3 QDs的结构稳定性并减少关键的碘空位(V I)缺陷状态。掺杂Zn的CsPbI 3(锌:CsPbI 3)量子点已经被成功地合成采用ZnI 2作为掺杂剂,以提供的Zn 2+和额外的I - 。理论计算和实验结果表明,Zn:CsPbI 3与原始的CsPbI 3 QD相比,QD显示出更好的热力学稳定性和更高的光致发光量子产率(PLQY)。Zn在CsPbI 3 QD中的掺杂增加了形成能和Goldschmidt耐受因子,从而提高了热力学稳定性。附加I -有助于减小V我CsPbI的合成过程中的缺陷3层的QD,导致更高的PLQY。更重要的是,锌的协同效应2+和我-在CsPbI 3 QD可防止CsPbI的制造过程中的损失碘3 QD膜,抑制形成新的V我太阳能电池构造中的缺陷状态。因此,阴离子/阳离子协同策略为CsPbI 3量子点太阳能电池(QDSC)提供了超过16%的功率转换效率,这是钙钛矿QDSC的最佳效率之一。
更新日期:2020-10-21
中文翻译:
通过缺陷控制实现效率超过16%的全无机CsPbI3量子点太阳能电池
全无机CsPbI 3量子点(QD)在光伏应用中显示出巨大潜力。但是,它们的性能受到缺陷和相稳定性的限制。本文提出了一种阴离子/阳离子协同策略,以提高CsPbI 3 QDs的结构稳定性并减少关键的碘空位(V I)缺陷状态。掺杂Zn的CsPbI 3(锌:CsPbI 3)量子点已经被成功地合成采用ZnI 2作为掺杂剂,以提供的Zn 2+和额外的I - 。理论计算和实验结果表明,Zn:CsPbI 3与原始的CsPbI 3 QD相比,QD显示出更好的热力学稳定性和更高的光致发光量子产率(PLQY)。Zn在CsPbI 3 QD中的掺杂增加了形成能和Goldschmidt耐受因子,从而提高了热力学稳定性。附加I -有助于减小V我CsPbI的合成过程中的缺陷3层的QD,导致更高的PLQY。更重要的是,锌的协同效应2+和我-在CsPbI 3 QD可防止CsPbI的制造过程中的损失碘3 QD膜,抑制形成新的V我太阳能电池构造中的缺陷状态。因此,阴离子/阳离子协同策略为CsPbI 3量子点太阳能电池(QDSC)提供了超过16%的功率转换效率,这是钙钛矿QDSC的最佳效率之一。