当前位置:
X-MOL 学术
›
Adv. Funct. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Hydrothermal and Pyrolytic Conversion of Biomasses into Catalysts for Advanced Oxidation Treatments
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2020-10-19 , DOI: 10.1002/adfm.202006505 Xi He 1 , Ningchao Zheng 1 , Ruiting Hu 1 , Zhuofeng Hu 1 , Jimmy C. Yu 2
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2020-10-19 , DOI: 10.1002/adfm.202006505 Xi He 1 , Ningchao Zheng 1 , Ruiting Hu 1 , Zhuofeng Hu 1 , Jimmy C. Yu 2
Affiliation
Biomasses are very important natural products. Transferring biomass into catalysts for the advanced oxidation process (AOP) via heat treatment has attracted extensive attention. This review systematically introduces and summarizes two kinds of innovative biomass‐based catalysts according to the treating temperature. At low temperature (<300 °C), biomasses are converted into hydrothermal carbonation carbon (HTCC) with semiconductive properties for photocatalysis application. At high temperature (>300 °C), by contrast, the products lose their semiconductive nature and become a conductive carbon‐based conductor (biochar). They usually work as AOP catalysts by activating oxidant of O2, H2O2, and peroxysulfate for environmental treatment. This review summarizes and compares HTCC and biochar according to their formation process, structure, catalytic mechanism, and key points for the activity enhancement. The active units in HTCC are the sp2‐hybridized polyfuran unit while those in biochar are the persistent free radicals, nitrogen‐containing unit, or defects. HTCC converts water into OH radicals by using the photoexcited electron/hole pairs induced by solar illumination, while biochar activates oxidants via the active unit on its surface. More importantly, this review summarizes and demonstrates the key points to obtain high‐efficiency HTCC and biochar catalysts. Finally, conclusions are drawn and the future aspects for biomass‐based catalysis are given.
中文翻译:
生物质的水热和热解转化为用于高级氧化处理的催化剂
生物质是非常重要的天然产物。通过热处理将生物质转移到用于高级氧化工艺(AOP)的催化剂中已引起广泛关注。本文根据处理温度系统地介绍和总结了两种基于生物质的新型催化剂。在低温(< 300 ° C)下,生物质转化为具有半导电性质的水热碳化碳(HTCC),可用于光催化应用。相反,在高温(> 300 ° C)下,这些产品失去了半导电性,成为导电的碳基导体(生物炭)。它们通常通过活化O 2,H 2的氧化剂作为AOP催化剂O 2和过氧硫酸盐用于环境处理。本文根据HTCC和生物炭的形成过程,结构,催化机理和活性增强的关键点进行了总结和比较。HTCC中的活性单元是sp 2杂交的聚呋喃单元,而生物炭中的活性单元是持久性自由基,含氮单元或缺陷。HTCC通过利用太阳光诱导的光激发电子/空穴对将水转化为OH自由基,而生物碳通过其表面上的活性单元活化氧化剂。更重要的是,本综述总结并论证了获得高效HTCC和生物炭催化剂的关键点。最后,得出结论,并给出了基于生物质的催化的未来方面。
更新日期:2020-10-19
中文翻译:
生物质的水热和热解转化为用于高级氧化处理的催化剂
生物质是非常重要的天然产物。通过热处理将生物质转移到用于高级氧化工艺(AOP)的催化剂中已引起广泛关注。本文根据处理温度系统地介绍和总结了两种基于生物质的新型催化剂。在低温(< 300 ° C)下,生物质转化为具有半导电性质的水热碳化碳(HTCC),可用于光催化应用。相反,在高温(> 300 ° C)下,这些产品失去了半导电性,成为导电的碳基导体(生物炭)。它们通常通过活化O 2,H 2的氧化剂作为AOP催化剂O 2和过氧硫酸盐用于环境处理。本文根据HTCC和生物炭的形成过程,结构,催化机理和活性增强的关键点进行了总结和比较。HTCC中的活性单元是sp 2杂交的聚呋喃单元,而生物炭中的活性单元是持久性自由基,含氮单元或缺陷。HTCC通过利用太阳光诱导的光激发电子/空穴对将水转化为OH自由基,而生物碳通过其表面上的活性单元活化氧化剂。更重要的是,本综述总结并论证了获得高效HTCC和生物炭催化剂的关键点。最后,得出结论,并给出了基于生物质的催化的未来方面。