Chemical Engineering Journal ( IF 13.3 ) Pub Date : 2020-10-16 , DOI: 10.1016/j.cej.2020.127353 Ke Wang , Feng Gu , Peter T. Clough , Youwei Zhao , Pengfei Zhao , Edward J. Anthony
Lithium orthosilicate (Li4SiO4) represents a potential class of high-temperature sorbents for CO2 capture in power plants and sorption enhanced methane reforming to produce H2. However, conventional wisdom suggests that pure Li4SiO4 should have extremely slow sorption kinetics at realistic low CO2 concentrations. Here, we report the opposite result: using a simple and cost-effective glucose-based mild combustion procedure, an unusually efficient and pure form of Li4SiO4 (MC-0.6) was synthesized to achieve a maximum uptake capacity of 35.0 wt.% at 580 °C for CO2 concentrations under 15 vol.% and maintained this capacity over multiple cycles. The characterization results showed that highly porous nano-agglomerate-like (50-100 nm) morphologies were apparent and ensured a rapid surface-sorption of CO2. In this process, a macroporous nano-sized Li2SiO3 cover on the melt layer of Li2CO3 was identified for the first time. This special structure appeared to accelerate the transportation of CO2 and the diffusion of Li+ and O2- through a molten layer enhancing contact with CO2. Thus, the sample MC-0.6 reduced both the surface-sorption and diffusion kinetics dependence on low CO2 concentrations. Rather than use traditional approaches (controlled morphologies combined with doping), we have demonstrated that the slow kinetics can be overcome simply by a controlled morphologies strategy, which opens up a new direction for the synthesis of high-performance Li4SiO4 sorbents.
中文翻译:
熔融态壳活化的高性能未掺杂Li 4 SiO 4,可在低CO 2浓度下捕获高温CO 2
原硅酸锂(Li 4 SiO 4)代表了一类潜在的高温吸附剂,用于发电厂中的CO 2捕集和增强甲烷重整以产生H 2的吸附。然而,传统观点认为,纯Li 4 SiO 4在现实的低CO 2浓度下应具有极慢的吸附动力学。在这里,我们报告相反的结果:使用简单且经济高效的基于葡萄糖的轻度燃烧程序,合成了一种异常有效且纯净的Li 4 SiO 4(MC-0.6)形式,最大吸收量为35.0 wt%。 CO 2在580°C时的百分比浓度低于15%(体积),并在多个循环中保持该容量。表征结果表明,高度多孔的纳米团状样(50-100 nm)形态是明显的,并确保了CO 2的快速表面吸附。在此过程中,首次确定了在Li 2 CO 3熔体层上覆盖的大孔纳米级Li 2 SiO 3。这种特殊的结构似乎促进了CO 2的运输以及Li +和O 2穿过熔融层的扩散,从而增强了与CO 2的接触。。因此,样品MC-0.6降低了对低CO 2浓度的表面吸附和扩散动力学。与使用传统方法(控制形态与掺杂相结合)相比,我们已经证明了慢速动力学可以简单地通过控制形态策略来克服,这为合成高性能Li 4 SiO 4吸附剂开辟了新的方向。