Nano Energy ( IF 16.8 ) Pub Date : 2020-10-14 , DOI: 10.1016/j.nanoen.2020.105492 Hyunsu Han , Song Jin , Seongmin Park , Yoongon Kim , Daehee Jang , Min Ho Seo , Won Bae Kim
Recently, oxygen vacancy engineering represents a new direction for rational design of high-performance catalysts for electrochemical CO2 reduction (CO2RR). In this work, a series of amorphous MnOx catalysts with different concentrations of oxygen vacancies, namely, low (a-MnOx-L), pristine (a-MnOx-P), and high oxygen vacancy (a-MnOx-H), have been prepared by simple plasma treatments. The resultant a-MnOx-H catalyst with a larger amount of oxygen vacancy on the catalyst surface is able to preferentially convert CO2 to CO with a high Faradaic efficiency of 94.8% and a partial current density of 10.4 mA cm-2 even at a relatively lower overpotential of 510 mV. On the basis of detailed experimental results and theoretical density functional theory (DFT) calculations, the enhancement of CO production is attributable to the abundant oxygen vacancies formed in the amorphous MnOx which should favor CO2 adsorption/activation and promote charge transfer with the catalyst for efficient CO2 reduction.
中文翻译:
非晶态MnO x Boost中等离子体诱导的氧空位对电化学还原CO 2的催化性能
最近,氧空位工程表示用于电化学CO的高性能催化剂合理设计新的方向2还原(CO 2 RR)。在这项工作中,一系列无定形的MnO X用不同浓度的氧空位,即,低(A-的MnO催化剂X -L),原始(α-MnO的X -P),和高的氧空位(A-MnO的X - H),已经通过简单的等离子体处理制备。将所得的α-MnO的X -H催化剂具有氧空位的催化剂表面上的较大的量是能够优先将CO 2以CO为94.8%的高法拉第效率和10.4毫安厘米的局部电流密度-2即使在相对较低的510 mV过电位下也是如此。根据详细的实验结果和理论密度泛函理论(DFT)计算,CO产量的增加归因于非晶态MnO x中形成的大量氧空位,这些空位应有利于CO 2吸附/活化并促进催化剂的电荷转移。用于有效减少CO 2。