流经传输管道的天然气是不纯的,并且具有各种不同浓度的非烃成分,例如氢气。天然气混合物中氢的存在会影响其性能和流动性能。氢浓度对流经运输管道的天然气的影响尚未得到充分研究和广泛理解。在本文中,流经管道的几种混合物包括典型的天然气和高达10%的不同浓度的氢气,并进行了评估,以证明它们对流量保证和天然气性能的影响。Transitgas项目中长度为94 km的字符串Ruswil – Griespass部分使用Aspen Hysys版本9进行了模拟,并使用Aspen Plus进行了验证。仿真规格为1.228 * 106 kg / h质量流量,外径和内径1200 mm和1164 mm以及75 bar和29.4°C的工作压力和温度。已经检查了不同氢浓度的影响,并估计了与典型混合物的差异。结果表明,天然气混合物中存在氢会降低其密度,氢含量为10%时,典型天然气的密度会降低11.78%。有趣的是,已发现高达2%的氢浓度会提高典型天然气的粘度,而在氢含量增加至2%以上时粘度会降低。另外,由于氢气的存在,传输管道上的压力损失增加,氢气浓度在10%时变为5。天然气混合物的压降增加了39%。同样,随着氢气浓度的增加,管道两端的温度下降也随之降低;氢含量为10%可使管道中的温度下降降低6.14%。而且,该发现证明了氢通过从尺寸对称图改变为尺寸不对称图而强烈地影响相包络。已通过将高度更改为上坡25 m和下坡25 m来研究管道高程的影响。结果表明,增加管道高度会增加管道长度上的压力损失。与此一起,结果表明,混合物中氢的存在提高了临界压力并降低了临界温度。随着氢气浓度的增加,管道上的温度下降降低;氢含量为10%可使管道中的温度下降降低6.14%。而且,该发现证明了氢通过从尺寸对称图改变为尺寸不对称图而强烈地影响相包络。已通过将高度更改为上坡25 m和下坡25 m来研究管道高程的影响。结果表明,增加管道高度会增加管道长度上的压力损失。与此一起,结果表明,混合物中氢的存在提高了临界压力并降低了临界温度。随着氢气浓度的增加,管道上的温度下降降低;氢含量为10%可使管道中的温度下降降低6.14%。而且,该发现证明了氢通过从尺寸对称图改变为尺寸非对称图而强烈地影响相包络。已通过将高度更改为上坡25 m和下坡25 m来研究管道高程的影响。结果表明,增加管道高度会增加管道长度上的压力损失。与此一起,结果表明,混合物中氢的存在提高了临界压力并降低了临界温度。管道中的温度下降降低了14%。而且,该发现证明了氢通过从尺寸对称图改变为尺寸不对称图而强烈地影响相包络。已通过将高度更改为上坡25 m和下坡25 m来研究管道高程的影响。结果表明,增加管道高度会增加管道长度上的压力损失。与此一起,结果表明,混合物中氢的存在提高了临界压力并降低了临界温度。管道中的温度下降降低了14%。而且,该发现证明了氢通过从尺寸对称图改变为尺寸不对称图而强烈地影响相包络。已通过将高度更改为上坡25 m和下坡25 m来研究管道高程的影响。结果表明,增加管道高度会增加管道长度上的压力损失。与此相伴,结果表明,混合物中氢的存在提高了临界压力并降低了临界温度。已通过将高度更改为上坡25 m和下坡25 m来研究管道高程的影响。结果表明,增加管道高度会增加管道长度上的压力损失。与此相伴,结果表明,混合物中氢的存在提高了临界压力并降低了临界温度。已通过将高度更改为上坡25 m和下坡25 m来研究管道高程的影响。结果表明,增加管道高度会增加管道长度上的压力损失。与此一起,结果表明,混合物中氢的存在提高了临界压力并降低了临界温度。
"点击查看英文标题和摘要"
Evaluation of hydrogen concentration effect on the natural gas properties and flow performance
The natural gas flowing through transmission pipeline is impure and has a wide range of non-hydrocarbons components at different concentrations like hydrogen. The presence of hydrogen in the natural gas mixture influences its properties and flow performance. The effect of hydrogen concentration on the natural gas flowing through a transportation pipeline has not been adequately investigated and widely comprehended. In this paper, several mixtures flow through pipeline include typical natural gas and hydrogen at different concentrations up to 10% are evaluated to demonstrate their impact on the flow assurance and the natural gas properties. The string Ruswil – Griespass part from the Transitgas project with 94 km length is simulated applying Aspen Hysys Version 9 and validated using Aspen Plus. The simulation specifications were 1.228 ∗ 106 kg/h mass flowrate, 1200 mm and 1164 mm the outer and inner diameters, and 75 bar and 29.4 °C operating pressure, and temperature. The effect of different hydrogen concentrations has been examined and the differences from the typical mixture are estimated. The results show that the presence of hydrogen in the natural gas mixture reduces its density, 10% hydrogen content records 11.78% reduction in the density of typical natural gas. Interestingly, it has been found that up to 2% of hydrogen concentration turns in elevating the viscosity of the typical natural gas while the viscosity decreases at the point that hydrogen content increases above 2%. In addition, the pressure losses over the transmission pipeline increases due to the presence of hydrogen, 10% hydrogen concentration turns in 5.39% increase in the pressure drop of the natural gas mixture. Also, the temperature drop across the pipeline decreases as the hydrogen concentration increases; 10% hydrogen content can result in a 6.14% reduction in the temperature drop across the pipeline. As well as, the findings prove that the hydrogen strongly impacts the phase envelope by changing from size symmetric to size asymmetric diagram. The effect of pipeline elevations has been investigated by changing the elevation up to 25 m uphill and 25 m downhill. The results state that increase the pipeline elevation turns in increasing the pressure losses over the pipeline length. Along with this, the results illustrate that the presence of hydrogen in the mixture elevates the critical pressure and reduces the critical temperature.