Ain-Shams Journal of Anesthesiology ( IF 0.5 ) Pub Date : 2020-10-06 , DOI: 10.1186/s42077-020-00096-5 Arimanickam Ganesamoorthi , Vinodhadevi Vijayakumar , Vasanthakumar Vellaichamy , Gopalakrishnan Panneerselvam
To the Editor,
It is recommended that breathing system filters should be incorporated in the expiratory limb of any ventilator, when used on a patient with severe acute respiratory syndrome (SARS) (Wilkes, 2011; Mechanical ventilation of SARS patients, 2003). The breathing circuit filters having bacterial and viral filtration efficiencies of 99.97% or greater will offer protection equal to or better than high-efficiency particulate air (HEPA) filters (Wilkes, 2011; Mechanical ventilation of SARS patients, 2003). These filtering barriers are placed at three locations to reduce the contagion during anesthesia using a circle system with CO2 absorber:
-
1)
Between the tracheal tube and the breathing circuit (Wilkes, 2011; Mechanical ventilation of SARS patients, 2003; Infection prevention and control guidelines for anesthesia care, 2020)
-
2)
Between the inspiratory limb of the circle system and the CO2 absorber (Infection prevention and control guidelines for anesthesia care, 2020)
-
3)
Between the expiratory limb of the circle system and the CO2 absorber (Wilkes, 2011; Mechanical ventilation of SARS patients, 2003; Infection prevention and control guidelines for anesthesia care, 2020)
Apart from the above precautions, usage of anesthesia scavenging system is recommended while anesthetizing a suspect/confirmed COVID-19 patient to prevent the potential contamination of the operating room with SARS-CoV-2 virus (Malhotra et al., 2020). In many of the low- and middle-income countries (LMIC), it is not uncommon to work with anesthesia workstations without an anesthesia scavenging system. One of the methods suggested is that a corrugated tubing can be applied to the scavenging port and can be dipped in a bucket with 1% hypochlorite solution (Malhotra et al., 2020). While using such technique, suitable personal protective equipment should be used while handling the hypochlorite solution and direct contact with the skin and eyes should be avoided (Malhotra et al., 2020).
In our hospital, we are using the Drager Fabius Plus anesthesia workstation without an anesthesia scavenging system/active gas scavenging (AGS). We attached a HEPA filter or a HMEF (heat moisture exchanger bacterial/viral filter) to the AGS (active scavenging system) port of the anesthesia machine (Fig. 1). HMEF/HEPA filter at the AGS would filter 99.97% of virus particles before the exhaled gas enters the operating room atmosphere. We also observed that placing the HMEF/HEPA filter at the AGS had not altered the measured airway pressures like positive end-expiratory pressure (PEEP) or peak airway pressure during ventilation. We replace the HMEF/HEPA filter connected to the AGS with a new one every 24 h. If the PEEP value increases without any patient factors, a change of the HMEF/HEPA filter should also be considered. The filter will be removed, and the PEEP behavior will be observed for 3 breaths; if the measured value normalizes, then the filter has to be changed (Wilkes, 2011; COVID-19: Usage of Dräger anaesthesia devices for long-term ventilation dated 19 may 2020, 2020). The HMEF/HEPA filter can be connected to the AGS, even if the anesthesia machine ventilator is used for prolonged ventilation of critically ill patients, like an ICU ventilator when a shortage arises in this COVID-19 pandemic (COVID-19: Usage of Dräger anaesthesia devices for long-term ventilation dated 19 may 2020, 2020). The HMEF/HEPA filter does not serve as an anesthesia gas scavenging system, but definitely filters bacteria and virus, which is the prime concern during this COVID-19 pandemic.
To conclude, in the current COVID-19 pandemic in operating rooms where anesthesia scavenging system is unavailable, placing an HMEF/HEPA filter at the AGS port is an easy and simple method which adds to the safety and effectively reduces the contamination of the operating room with the SARS-CoV-2 virus.
Not applicable
- SARS:
-
Severe acute respiratory syndrome
- HEPA filter:
-
High-efficiency particulate air filter
- CO2 :
-
Carbon dioxide
- COVID-9:
-
Coronavirus disease 2019
- SARS-CoV-2:
-
Severe acute respiratory syndrome coronavirus 2
- LMIC:
-
Low- and middle-income countries
- AGS:
-
Active gas scavenging
- HMEF:
-
Heat moisture exchanger bacterial/viral filter
- PEEP:
-
Positive end-expiratory pressure
COVID-19: Usage of Dräger anaesthesia devices for long-term ventilation dated 19 may 2020. https://www.draeger.com/Library/Content/Draeger-Customer-Letter-Covid19-Usage-Anaesthesia-devices-for-long-term-ventilation.pdf [accessed 19 June 2020].
Infection prevention and control guidelines for anesthesia care. https://www.aana.com/docs/default-source/practice-aana-com-web-documents-(all)/infection-prevention-and-control-guidelines-for-anesthesia-care.pdf?sfvrsn=850049b1_4[accessed 19 June 2020].
Malhotra N, Bajwa SJ, Joshi M, Mehdiratta L, Trikha A (2020) COVID operation theatre- advisory and position statement of Indian Society of Anaesthesiologists (ISA National). Indian J Anaesth 64:355–362
PubMed PubMed Central Google Scholar
Mechanical ventilation of SARS patients (2003) Safety issues involving breathing-circuit filters. Health Devices 32:220–222
Google Scholar
Wilkes AR (2011) Heat and moisture exchangers and breathing system filters: their use in anaesthesia and intensive care. Part 2 – practical use, including problems, and their use with paediatric patients. Anaesthesia 66(1):40–51
CAS Article Google Scholar
Download references
Not applicable
Nil
Affiliations
Department of Anesthesiology and Critical Care, Meenakshi Hospital, Thanjavur, 613005, India
Arimanickam Ganesamoorthi, Vinodhadevi Vijayakumar, Vasanthakumar Vellaichamy & Gopalakrishnan Panneerselvam
- Arimanickam GanesamoorthiView author publications
You can also search for this author in PubMed Google Scholar
- Vinodhadevi VijayakumarView author publications
You can also search for this author in PubMed Google Scholar
- Vasanthakumar VellaichamyView author publications
You can also search for this author in PubMed Google Scholar
- Gopalakrishnan PanneerselvamView author publications
You can also search for this author in PubMed Google Scholar
Contributions
AG conceptualized and formally analyzed the alternative for decontamination of outflow gas from the anesthesia machine when anesthesia scavenging system is unavailable and contributed to the writing and editing of the final version of the manuscript. ViVi conceptualized and formally analyzed the alternative for decontamination of outflow gas from the anesthesia machine when anesthesia scavenging system is unavailable, and contributed to the review of literature, and writing and editing of the final version of the manuscript. VaVe contributed to the review of literature, and writing and editing of the final version of the manuscript. GP contributed to the review of literature, and writing and editing of the final version of the manuscript. All authors read and approved the final manuscript.
Corresponding author
Correspondence to Vinodhadevi Vijayakumar.
Ethics approval and consent to participate
Not applicable
Consent for publication
Not applicable
Competing interests
The authors declare that they have no competing interests.
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Reprints and Permissions
Cite this article
Ganesamoorthi, A., Vijayakumar, V., Vellaichamy, V. et al. Non-availability of anesthesia scavenging system and decontamination of the outflow gas from the anesthesia machine during this COVID-19 pandemic. Ain-Shams J Anesthesiol 12, 46 (2020). https://doi.org/10.1186/s42077-020-00096-5
Download citation
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s42077-020-00096-5
Keywords
- Anesthesia scavenging system
- Active gas scavenging system
- Heat moisture exchanger bacterial-viral filter (HMEF)
- High-efficiency particulate air (HEPA) filter
- Coronavirus disease (COVID-19) pandemic
中文翻译:
在这种COVID-19大流行期间,无法使用麻醉清除系统并对麻醉机中的流出气体进行净化处理
致编辑
当对患有严重急性呼吸道综合症(SARS)的患者使用呼吸器时,建议在呼吸机的四肢中安装呼吸系统过滤器(Wilkes,2011; SARS患者的机械通气,2003)。具有99.97%或更高的细菌和病毒过滤效率的呼吸回路过滤器将提供与高效微粒空气(HEPA)过滤器相同或更好的保护(Wilkes,2011; SARS患者的机械通气,2003)。这些过滤屏障被放置在三个位置,以减少麻醉期间使用带有CO 2吸收剂的环形系统引起的传染:
-
1)
在气管导管和呼吸回路之间(Wilkes,2011年; SARS患者的机械通气,2003年; 2020年麻醉护理的感染预防和控制指南)
-
2)
在循环系统的吸气肢与CO 2吸收器之间(麻醉护理的感染预防和控制指南,2020年)
-
3)
在循环系统的呼气肢与CO 2吸收剂之间(Wilkes,2011年; SARS患者的机械通气,2003年; 2020年麻醉护理的感染预防和控制指南)
除上述预防措施外,建议在麻醉疑似/确诊的COVID-19患者时使用麻醉清除系统,以防止手术室受到SARS-CoV-2病毒的潜在污染(Malhotra等,2020)。在许多低收入和中等收入国家(LMIC)中,在没有麻醉清除系统的情况下使用麻醉工作站的情况并不少见。建议的一种方法是将波纹管应用于扫气口,并将其浸入装有1%次氯酸盐溶液的桶中(Malhotra等人,2020年)。使用这种技术时,在处理次氯酸盐溶液时应使用适当的个人防护设备,并应避免与皮肤和眼睛直接接触(Malhotra等人,2020年)。
在我们的医院中,我们使用的是Drager Fabius Plus麻醉工作站,没有麻醉清除系统/活性气体清除(AGS)。我们将HEPA过滤器或HMEF(热湿交换细菌/病毒过滤器)连接到麻醉机的AGS(主动清除系统)端口(图1)。AGS的HMEF / HEPA过滤器可在呼出的气体进入手术室大气之前过滤掉99.97%的病毒颗粒。我们还观察到,在AGS上放置HMEF / HEPA过滤器并没有改变测得的气道压力,例如通气期间的呼气末正压(PEEP)或峰值气道压力。我们每24小时更换一次与AGS连接的HMEF / HEPA过滤器。如果PEEP值在没有任何患者因素的情况下增加,则还应考虑更换HMEF / HEPA过滤器。过滤器将被删除,并观察3次呼吸的PEEP行为;如果测量值正常化,则必须更换过滤器(Wilkes,2011年; COVID-19:Dräger麻醉设备用于长期通风的日期为2020年5月19日,2020年)。HMEF / HEPA过滤器可以连接到AGS,即使麻醉机呼吸机用于重症患者的长时间通气,例如当这种COVID-19大流行不足时,ICU呼吸机也是如此(COVID-19:Dräger的使用日期为2020年5月19日,2020年的长期通风麻醉设备)。HMEF / HEPA过滤器不能用作麻醉气体清除系统,但可以过滤细菌和病毒,这是此COVID-19大流行期间的主要考虑因素。然后必须更换过滤器(Wilkes,2011年; COVID-19:Dräger麻醉设备用于长期通风的日期为2020年5月19日,2020年)。HMEF / HEPA过滤器可以连接到AGS,即使麻醉机呼吸机用于重症患者的长时间通气,例如当这种COVID-19大流行不足时,ICU呼吸机也是如此(COVID-19:Dräger的使用日期为2020年5月19日,2020年的长期通风麻醉设备)。HMEF / HEPA过滤器不能用作麻醉气体清除系统,但可以过滤细菌和病毒,这是此COVID-19大流行期间的主要考虑因素。然后必须更换过滤器(Wilkes,2011年; COVID-19:Dräger麻醉设备用于长期通风的日期为2020年5月19日,2020年)。HMEF / HEPA过滤器可以连接到AGS,即使麻醉机呼吸机用于重症患者的长时间通气,例如当这种COVID-19大流行不足时,ICU呼吸机也是如此(COVID-19:Dräger的使用日期为2020年5月19日,2020年的长期通风麻醉设备)。HMEF / HEPA过滤器不能用作麻醉气体清除系统,但可以过滤细菌和病毒,这是此COVID-19大流行期间的主要考虑因素。即使麻醉机呼吸机用于重症患者的长时间通气,例如ICU呼吸机,当这种COVID-19大流行出现短缺时(COVID-19:Dräger麻醉设备用于2020年5月19日的长期通气, 2020)。HMEF / HEPA过滤器不能用作麻醉气体清除系统,但可以过滤细菌和病毒,这是此COVID-19大流行期间的主要考虑因素。即使麻醉机呼吸机用于重症患者的长时间通气,例如ICU呼吸机,当这种COVID-19大流行出现短缺时(COVID-19:Dräger麻醉设备用于2020年5月19日的长期通气, 2020)。HMEF / HEPA过滤器不能用作麻醉气体清除系统,但可以过滤细菌和病毒,这是此COVID-19大流行期间的主要考虑因素。
总而言之,在当前无法使用麻醉清除系统的手术室中的COVID-19大流行中,在AGS端口处放置HMEF / HEPA过滤器是一种简便的方法,可增加安全性并有效减少手术室的污染带有SARS-CoV-2病毒。
不适用
- 非典:
-
严重急性呼吸系统综合症
- HEPA过滤器:
-
高效颗粒空气过滤器
- CO 2 :
-
二氧化碳
- COVID-9:
-
2019冠状病毒病
- SARS-CoV-2:
-
严重急性呼吸系统综合症冠状病毒2
- LMIC:
-
中低收入国家
- AGS:
-
活性气体清除
- HMEF:
-
换热器细菌/病毒过滤器
- 窥视:
-
呼气末正压
COVID-19:日期为2020年5月19日的Dräger麻醉设备用于长期通气的情况。https://www.draeger.com/Library/Content/Draeger-Customer-Letter-Covid19-Usage-Anaesthesia-devices-for-long -term-ventilation.pdf [2020年6月19日访问]。
麻醉护理的感染预防和控制指南。https://www.aana.com/docs/default-source/practice-aana-com-web-documents-(all)/infection-prevention-and-control-guidelines-for-anesthesia-care.pdf?sfvrsn= 850049b1_4 [2020年6月19日访问]。
Malhotra N,Bajwa SJ,Joshi M,Mehdiratta L,Trikha A(2020年)COVID手术室-印度麻醉医师学会(ISA国家)的意见和立场声明。印度J Anaesth 64:355–362
PubMed PubMed Central Google学术搜索
SARS患者的机械通气(2003)涉及呼吸回路过滤器的安全问题。健康设备32:220–222
谷歌学术
Wilkes AR(2011)湿热交换器和呼吸系统过滤器:它们在麻醉和重症监护中的使用。第2部分–实际使用(包括问题)及其在儿科患者中的使用。麻醉66(1):40–51
CAS文章Google学术搜索
下载参考
不适用
零
隶属关系
Meenakshi医院麻醉与重症监护室,印度坦加布尔,613005
Arimanickam Ganesamoorthi,Vinodhadevi Vijayakumar,Vasanthakumar Vellaichamy和Gopalakrishnan Panneerselvam
- Arimanickam Ganesamoorthi查看作者出版物
您也可以在PubMed Google学术搜索中搜索该作者
- Vinodhadevi Vijayakumar查看作者出版物
您也可以在PubMed Google学术搜索中搜索该作者
- Vasanthakumar Vellaichamy查看作者出版物
您也可以在PubMed Google学术搜索中搜索该作者
- Gopalakrishnan Panneerselvam查看作者出版物
您也可以在PubMed Google学术搜索中搜索该作者
会费
AG在没有麻醉清除系统的情况下,对麻醉机流出气体的净化方法进行了概念化和形式化的分析,这有助于撰写和编辑最终版本的手稿。当麻醉清除系统不可用时,ViVi概念化并正式分析了从麻醉机流出的气体进行净化的替代方法,并有助于文献复习以及最终版本的撰写和编辑。VaVe为文学评论,稿件的最终版本的撰写和编辑做出了贡献。GP致力于文学评论,稿件最终版本的撰写和编辑。所有作者阅读并认可的终稿。
通讯作者
对应于Vinodhadevi Vijayakumar。
道德规范的批准和同意参加
不适用
同意发表
不适用
利益争夺
作者宣称他们没有竞争利益。
发行人须知
对于已发布地图和机构隶属关系中的管辖权主张,Springer Nature保持中立。
开放存取本文是根据知识共享署名4.0国际许可许可的,该许可允许以任何媒介或格式使用,共享,改编,分发和复制,只要您对原始作者和出处提供适当的信誉,链接到知识共享许可,并指出是否进行了更改。本文的图像或其他第三方材料包含在该文章的知识共享许可中,除非在该材料的信用栏中另有说明。如果该材料未包含在该文章的创用CC许可中,并且您的预期用途未得到法律法规的许可或超出了许可的用途,则您需要直接获得版权所有者的许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/。
转载和许可
引用本文
Ganesamoorthi,A.,Vijayakumar,V.,Vellaichamy,V。等。在这种COVID-19大流行期间,无法使用麻醉清除系统并对麻醉机中的流出气体进行净化处理。AIN-沙姆斯Ĵ麻醉学 12, 46(2020)。https://doi.org/10.1186/s42077-020-00096-5
下载引文
收到:
已接受:
发表时间:
DOI :https ://doi.org/10.1186/s42077-020-00096-5
关键词
- 麻醉清除系统
- 活性气体清除系统
- 热湿交换细菌病毒过滤器(HMEF)
- 高效微粒空气(HEPA)过滤器
- 冠状病毒病(COVID-19)大流行