当前位置:
X-MOL 学术
›
J. Membr. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Plasticizer-assisted interfacial polymerization for fabricating advanced reverse osmosis membranes
Journal of Membrane Science ( IF 8.4 ) Pub Date : 2021-02-01 , DOI: 10.1016/j.memsci.2020.118788 Yitian Qin , Zhihao Zhu , Guodong Kang , Haijun Yu , Yiming Cao
Journal of Membrane Science ( IF 8.4 ) Pub Date : 2021-02-01 , DOI: 10.1016/j.memsci.2020.118788 Yitian Qin , Zhihao Zhu , Guodong Kang , Haijun Yu , Yiming Cao
Abstract High-performance semi-permeable membranes play a vital role in the membrane-based separation technology for seawater and brackish water desalination. Herein, plasticizer-assisted interfacial polymerization (PAIP) was implemented to fabricate aromatic polyamide layers with improved water flux and comparable salt rejection for the first time. Specifically, plasticizer (i.e., diethyl phthalate, DEP) was introduced into the organic phase to perform interfacial polymerization. Effective regulation of the desalination performance was achieved via meticulously adjusting plasticizer concentration. With the addition of 0.5 wt% DEP, water flux promoted from 1.06 L m−2 h−1 bar−1 of the pristine membrane to 2.85 L m−2 h−1 bar−1, with NaCl rejection decreasing from 98.3% to 98.2%. With the addition of 1.5 wt% and 2.0 wt% DEP, water flux improved to 4.82 L m−2 h−1 bar−1 and 5.95 L m−2 h−1 bar−1, respectively, more than 4.5 and 5.5 times that of the pristine membrane. Nevertheless, NaCl rejection decreased to 96.6% and 95.9%, respectively. The infrared detection revealed that the introduction of DEP disrupted the original intermolecular hydrogen bonding between polyamide chains, thereby enhancing the softness of the polyamide layer, which was demonstrated by the decreased Young's modulus. As a result, the water diffusion efficiency through the polyamide layer was promoted, leading to the significant enhancement of water flux. These findings pave a new route for the synthesis of the aromatic polyamide layer with excellent desalination performance to expand the application of membrane technology.
中文翻译:
用于制造先进反渗透膜的增塑剂辅助界面聚合
摘要 高性能半透膜在海水和苦咸水淡化的膜分离技术中起着至关重要的作用。在此,增塑剂辅助界面聚合(PAIP)首次用于制造具有改进的水通量和相当的盐截留率的芳族聚酰胺层。具体而言,将增塑剂(即邻苯二甲酸二乙酯,DEP)引入有机相中以进行界面聚合。通过精细调节增塑剂浓度实现对脱盐性能的有效调节。添加 0.5 wt% DEP 后,水通量从原始膜的 1.06 L m-2 h-1 bar-1 提升至 2.85 L m-2 h-1 bar-1,NaCl 截留率从 98.3% 降至 98.2 %。添加 1.5 wt% 和 2.0 wt% DEP 后,水通量提高到 4。分别为 82 L m-2 h-1 bar-1 和 5.95 L m-2 h-1 bar-1,分别是原始膜的 4.5 和 5.5 倍以上。尽管如此,NaCl 排斥率分别下降到 96.6% 和 95.9%。红外检测表明,DEP 的引入破坏了聚酰胺链之间原有的分子间氢键,从而增强了聚酰胺层的柔软度,这可以通过杨氏模量的降低来证明。结果,通过聚酰胺层的水扩散效率得到提高,导致水通量显着提高。这些发现为合成具有优异脱盐性能的芳族聚酰胺层拓展了膜技术的应用开辟了新途径。是原始膜的5倍。尽管如此,NaCl 排斥率分别下降到 96.6% 和 95.9%。红外检测表明,DEP 的引入破坏了聚酰胺链之间原有的分子间氢键,从而增强了聚酰胺层的柔软度,这可以通过杨氏模量的降低来证明。结果,通过聚酰胺层的水扩散效率得到提高,导致水通量显着提高。这些发现为合成具有优异脱盐性能的芳族聚酰胺层拓展了膜技术的应用开辟了新途径。是原始膜的5倍。尽管如此,NaCl 排斥率分别下降到 96.6% 和 95.9%。红外检测表明,DEP 的引入破坏了聚酰胺链之间原有的分子间氢键,从而增强了聚酰胺层的柔软度,这可以通过杨氏模量的降低来证明。结果,通过聚酰胺层的水扩散效率得到提高,导致水通量显着提高。这些发现为合成具有优异脱盐性能的芳族聚酰胺层拓展了膜技术的应用开辟了新途径。红外检测表明,DEP 的引入破坏了聚酰胺链之间原有的分子间氢键,从而增强了聚酰胺层的柔软度,这可以通过杨氏模量的降低来证明。结果,通过聚酰胺层的水扩散效率得到提高,导致水通量显着提高。这些发现为合成具有优异脱盐性能的芳族聚酰胺层拓展了膜技术的应用开辟了新途径。红外检测表明,DEP 的引入破坏了聚酰胺链之间原有的分子间氢键,从而增强了聚酰胺层的柔软度,这可以通过杨氏模量的降低来证明。结果,通过聚酰胺层的水扩散效率得到提高,导致水通量显着提高。这些发现为合成具有优异脱盐性能的芳族聚酰胺层拓展了膜技术的应用开辟了新途径。导致水通量显着提高。这些发现为合成具有优异脱盐性能的芳族聚酰胺层拓展了膜技术的应用开辟了新途径。导致水通量显着提高。这些发现为合成具有优异脱盐性能的芳族聚酰胺层拓展了膜技术的应用开辟了新途径。
更新日期:2021-02-01
中文翻译:
用于制造先进反渗透膜的增塑剂辅助界面聚合
摘要 高性能半透膜在海水和苦咸水淡化的膜分离技术中起着至关重要的作用。在此,增塑剂辅助界面聚合(PAIP)首次用于制造具有改进的水通量和相当的盐截留率的芳族聚酰胺层。具体而言,将增塑剂(即邻苯二甲酸二乙酯,DEP)引入有机相中以进行界面聚合。通过精细调节增塑剂浓度实现对脱盐性能的有效调节。添加 0.5 wt% DEP 后,水通量从原始膜的 1.06 L m-2 h-1 bar-1 提升至 2.85 L m-2 h-1 bar-1,NaCl 截留率从 98.3% 降至 98.2 %。添加 1.5 wt% 和 2.0 wt% DEP 后,水通量提高到 4。分别为 82 L m-2 h-1 bar-1 和 5.95 L m-2 h-1 bar-1,分别是原始膜的 4.5 和 5.5 倍以上。尽管如此,NaCl 排斥率分别下降到 96.6% 和 95.9%。红外检测表明,DEP 的引入破坏了聚酰胺链之间原有的分子间氢键,从而增强了聚酰胺层的柔软度,这可以通过杨氏模量的降低来证明。结果,通过聚酰胺层的水扩散效率得到提高,导致水通量显着提高。这些发现为合成具有优异脱盐性能的芳族聚酰胺层拓展了膜技术的应用开辟了新途径。是原始膜的5倍。尽管如此,NaCl 排斥率分别下降到 96.6% 和 95.9%。红外检测表明,DEP 的引入破坏了聚酰胺链之间原有的分子间氢键,从而增强了聚酰胺层的柔软度,这可以通过杨氏模量的降低来证明。结果,通过聚酰胺层的水扩散效率得到提高,导致水通量显着提高。这些发现为合成具有优异脱盐性能的芳族聚酰胺层拓展了膜技术的应用开辟了新途径。是原始膜的5倍。尽管如此,NaCl 排斥率分别下降到 96.6% 和 95.9%。红外检测表明,DEP 的引入破坏了聚酰胺链之间原有的分子间氢键,从而增强了聚酰胺层的柔软度,这可以通过杨氏模量的降低来证明。结果,通过聚酰胺层的水扩散效率得到提高,导致水通量显着提高。这些发现为合成具有优异脱盐性能的芳族聚酰胺层拓展了膜技术的应用开辟了新途径。红外检测表明,DEP 的引入破坏了聚酰胺链之间原有的分子间氢键,从而增强了聚酰胺层的柔软度,这可以通过杨氏模量的降低来证明。结果,通过聚酰胺层的水扩散效率得到提高,导致水通量显着提高。这些发现为合成具有优异脱盐性能的芳族聚酰胺层拓展了膜技术的应用开辟了新途径。红外检测表明,DEP 的引入破坏了聚酰胺链之间原有的分子间氢键,从而增强了聚酰胺层的柔软度,这可以通过杨氏模量的降低来证明。结果,通过聚酰胺层的水扩散效率得到提高,导致水通量显着提高。这些发现为合成具有优异脱盐性能的芳族聚酰胺层拓展了膜技术的应用开辟了新途径。导致水通量显着提高。这些发现为合成具有优异脱盐性能的芳族聚酰胺层拓展了膜技术的应用开辟了新途径。导致水通量显着提高。这些发现为合成具有优异脱盐性能的芳族聚酰胺层拓展了膜技术的应用开辟了新途径。