该新矿物名称中有16种新矿物的条目,其中包括火山富马酚的矿物:虫药,弹泥石,红苏铁矿和钠钙石;铵硅铝石 阿连德CV3球粒陨石中富含Ca-Al的夹杂物的矿物:方解石,方铁矿和方镁石 新的陆上磷化物:克马特普洛石,金缕石,穆拉什克石,白云母,透水红石,钛铁矿和祖克坦石;假面沸石和有关oyelite的新数据。Demartin,C.Castellano和I.Campostrini(2019)Acmonidesite,一种新的氯化铵硫酸盐,来自意大利风神岛伏尔卡诺的拉福萨火山口。矿物学杂志83(1),137–142.F。Demartin,C.Castellano和I.Campostrini(2019)Acmonidesite,一种新的氯化铵硫酸盐,来自意大利风神岛伏尔卡诺的拉福萨火山口。矿物学杂志83(1),137–142.Ac虫病(IMA 2013-068),(NH4,K,Pb2 +,Na)9Fe42 +(SO4)5Cl8是斜方晶系的,是一种新矿物,存在于意大利西西里岛伊奥利亚群岛伏尔卡诺的拉福萨火山口的活性富马FA FA(T〜250°C)中。它出现在火山碎屑角砾岩上,具有角闪石,钠长石和adranosite,为褐色棱柱形晶体,最大至0.1 mm,主要形式为:{100},{120},{011},{010},{102},并且没有明显的孪生。矿物具有浅褐色条纹,玻璃光泽,无解理。在UV辐射下未观察到荧光。没有提供硬度数据;Dmeas = 2.56(1),Dcalc = 2.551 g / cm3。在平面偏振透射光中,酰胺具有强烈的棕色(未提及多相性)。它是光学双轴(+),α= 1.580(2),β= 1.590(2),γ= 1.635(2)(白光),2Vmeas = 53(3)°和2Vcalc = 51.6°; X = c,Y = b,Z = a。FTIR光谱显示与3214(宽),2921、2851和1395 cm-1处存在铵有关的强谱带;在740、1005、1083、1137和1218 cm-1处的典型硫酸盐吸收率。1620和1730 cm-1处的弱带可能是由于用OH-部分取代了Cl-。在未抛光的表面上进行的八次电子探针EDS分析(在20 kV激发电压,10 pA束电流和2μm束直径下进行,以使束下的损伤和失氨最小化)的平均值[wt%(范围)]为:(NH4 )2O(按结构)11.05,K2O 4.91(4.28–6.14),Na2O 2.82(2.28–3.54),FeO 20.93(19.51–21.88),MnO 0.42(0.15–1.24),PbO 10.25(7.03-12.23),SO3 29.67 (27.46–32.51),氯20.80(18.42–23.46),溴0.45(0.36-0.51),O =氯化物4.75,总计96.55。基于28个阴离子pfu的经验公式为(NH4)5.77K1.42Pb0.62Na1.24Fe3.962 + Mn0.08S5.04O20.16Cl7.97Br0.08。粉末X射线衍射图中最强的反射是:[dÅ(I%; hkl)] 8.766(100; 110),1.805(88; 390),5.178(45; 131),4.250(42; 221) ,2.926(42; 330),2.684(32; 261)。从粉末数据中提炼出的晶胞参数为a = 9.840(1),b = 19.455(2),c = 17.847(2)Å,V = 3416.6Å3.单晶XRD数据显示化物为正交晶,空间C2221组,a = 9.841(1),b = 19.448(3),c = 17.847(3)Å,V = 3415.7Å3,Z =4。对于观察到的4614个独立的I,晶体结构被细化为最终的R = 0.0363 >2σ(I)反射。该结构包含两个不同的扭曲八面体位点,Fe1(由SO42–基团的2个Cl原子和4个O原子协调)和Fe2(由SO42–基团的3个Cl原子和3个O原子协调)。四个Fe2 +扭曲的八面体链与其他三个由独立的SO42–四面体桥接的顶点共享Cl顶点组成有限的簇,它们仅通过硫酸根阴离子相互作用形成三维框架,其中的空隙被4个独立的NH4 +离子占据(其中2个部分被K +),一个Na + / Pb2 +位和一个Cl-离子取代。这个名字来自Acmonides(来自希腊语Aκμωνιδης),是Ovidius的独眼巨人之一,Hephaistos(神话中的火神)的助手Hephaistos,据称其伪造者位于Vulcano。整版材料存放在意大利米兰大学研究中心的化学部参考文献中。DBAR Kampf,BP Nash,PM Adams,J.Marthy和JM Hughes(2018)铵硅铝石[[(NH4)2Mg2(H2O)20] [V10O28],一种来自Burro矿的十癸酸盐新物种,科罗拉多州的光滑岩石区。加拿大矿物学家,56(6),859–869.AR Kampf,BP Nash,PM Adams,J. Marthy,and JM Hughes(2018)Ammoniolasalite,[(NH4)2Mg2(H2O)20] [V10O28],新的十钒酸盐种来自科罗拉多州斯利克罗克地区的Burro矿。加拿大矿物学家,56(6),859–869.Amononiolasalite(IMA 2017-094),理想的是[(NH4)2Mg2(H2O)20] [V10O28],单斜晶系,是一种在地下Burro矿山Slick中发现的新的十钒酸盐物种。美国科罗拉多州圣米格尔县洛克区(38°2′42″ N 108°53′23″ W)。该矿属于侏罗纪莫里森组盐洗段砂岩中一个120公里长的弧形“ Uravan矿带”,其床状或辊前沉积物。U和V初级矿石的矿化作用是在碳质植物材料堆积物周围强烈还原的环境中沉积的。铵硅藻土以及其他十钒酸盐[V10O28] 6–,质子化十钒酸盐,[HxV10O28](6x),混合价十钒酸盐[(Vx4+ V10x5 +)O28](6 + x)和铀矿物质是由于一次采矿的初次氧化而产生的在室温下的蒙脱石-堇青石组合。铵来自有机物。矿物形式的地壳通常在含蒙脱石和堇青石的砂岩上形成厚达2毫米的铵铁滑石,以及含NH4的十钒铁,方铁矿和维纳铁矿。地壳中的亮橙色至橙黄色铵硅铝石晶体呈平行取向。[101]它们短短棱柱状,等价,通常带有阶梯状或骨架状的面孔。晶体形式为{001},{110},{101},{111},{111},{201},{311}。矿物具有淡橙色的条纹和玻璃光泽。它的矿物在紫外线辐射下不显示任何荧光。铵硅铝石是脆性的,具有贝壳状骨折并且没有卵裂。莫氏硬度为〜1;Dmeas = 2.28(2)和Dcalc = 2.278 g / cm3(理想公式为2.271)。在室温下,它缓慢溶于水(数分钟),并迅速溶于稀盐酸(秒)。铵硅铝石是多色X(黄色)<Y(黄色橙色)<Z(橙色)。它是光学双轴(–),α= 1.740(3),β= 1.769(3),γ= 1.771(3)(白光),2V = 31(1)°;在钝角处,Y = b,Z ^ a = 38°。光轴的色散非常强,r>ν。FTIR光谱类似于在3700–300 cm-1(O–H和N–H拉伸)具有广泛的强多组分特征的拉萨石光谱,在1700 cm–1附近(H–O–H弯曲)有很强的峰,大约1450 cm-1(NH4变形)和大约1000cm-1(VO拉伸)。在三个晶体上的四点电子探针WDS分析的平均值[wt%(范围)]为K2O 0.95(0.53-1.16),MgO 6.53(6.36-6.79),V2O5 76.02(75.12-76.84),(NH4)2O 1.64( 1.34–1.75)。铵硅铝石对空气中的脱水和脱氨非常敏感,尤其是在将晶体与基质分离和真空下的过程中。通过CHN分析获得的数据显示为(NH 4)2 O 2.65,H 2 O 19.76重量%。根据结构研究(考虑到NH4 / K位点的全部占据; V = 10和O = 48 apfu)进行的计算得出(NH4)2O为3.26,H2O为25.70 wt%。基于48 O,10 V apfu,(NH4)2O和H2O的计算值以及归一化以提供总计100%的其他元素(即K2O 0.81,MgO 5.56,V2O5 64.68)的经验公式为[(NH4)1.76 K0.24] ∑2.00Mg1.94 [V105 + O28]·20H2O。衍射图中最强的线是[dÅ(I%; hkl)]:10.64(24; 200),8.57(21; 202),9.43(100; 110,111),7.62(26; 002,111),6.80(32; 112,311),2.725(23; 040,621)。通过全模式拟合从粉末数据中精炼得到的晶胞参数为a = 24.471(9),b = 10.935(9),c = 17.456(9)Å,β= 119.051(14)°和V = 4083Å3。单晶XRD数据显示铵硅铝石是单斜晶,空间群C2 / c,a = 24.478(3),b = 10.9413(4),c = 17.5508(12)Å,β= 119.257(7)°,V = 4100.9 Å3,Z = 4。通过直接方法解析结构,并针对3628 I>2σ(I)独立反射将其精炼为R1 = 0.0357。铵硅铝石与钠铝石[Na2Mg2(H2O)20] [V10O28]等结构。其原子排列由结构单元[V10O28] 6–十钒酸盐基团和间隙络合物[(NH4,K)2Mg2(H2O)20] 6+组成。Mg原子键合到间隙单元的H2O基团,并且不与十单元钒酸盐基或间隙单元的其他多面体共享任何键。(NH4,K)位点链接至十氢钒酸盐结构基团的四个H2O基团和三个氧原子。从该结构精炼的那个位置的占用是[(NH4)1.30K0.70] ∑2.00。将该差异指定为NH4和K相对含量的实际变化。名称反映了化学组成为lasalite的NH4占主导地位(超过Na)的类似物。五个同种标本存放在美国加利福尼亚州洛杉矶县洛杉矶县自然历史博物馆中DBMA Ma,J.Paque和O.Tschauner(2016年)发现了贝氏体Ca2V6Al6O20,这是一种富含V的Ca中的新蚀变矿物-来自阿连德的富含Al的成分。第47届月球和行星科学会议,会议T335,1704年。Ma和JR Beckett(2016)是来自阿连德的两种新矿物:伯内特特CaVAlSiO6和钙铝矿Ca3TiSi2(Al2Ti)O14:富V富Ca-Al夹杂物演化的线索。第47届月球与行星科学会议,会议T335,1595年。Ma,J.Paque和O.Tschauner(2016)在艾伦德(Allende)的富含V的富含Ca-Al的包裹体中发现了一种新型的变质矿物-钙钛矿Ca2V6Al6O20。第47届月球和行星科学会议,会议T335,1704年。Ma和JR Beckett(2016)是来自阿连德的两种新矿物:伯内特特CaVAlSiO6和钙铝矿Ca3TiSi2(Al2Ti)O14:富V富Ca-Al夹杂物演化的线索。第47届月球与行星科学会议,T335会议,1595年。三种新矿物:方解石(IMA 2015-001),理想的是Ca2V6Al6O20,三斜晶系,蓝宝石超群的铜镁矿成员;Burnettite(IMA 2013-054),理想的是CaVAlSiO6,单斜晶系,辉石基团的成员;镁橄榄石(IMA 2013-053),Ca3TiSi2(Al2,Ti)3O14,三角形,发现于Allende碳质碳中富含V且蓬松的A型富含Ca-Al的夹杂物(CAI)A-WP1(0.6×1 mm)球粒陨石CV3。在对美国华盛顿特区史密森学会的国家自然历史博物馆标本USNM 7617进行研究时,先前曾提到过类似成分的相(Paque 1985,1989)。被认为是所有三种新矿物的原型。CM2 Essebi球粒陨石的CAIs表征了类似于磷灰石的富钛相(El Goresy等,1984)。Burnettite和paqueite在A-WP1的铝质陨石(分别为Ak9和Ak11)中形成微米级的正方晶。CAI中的其他主要相为尖晶石,钙钛矿,锰铁矿-辉石,锂铁矿和难熔金属晶粒。Beckettite发生在A-WP1的高度蚀变区域内,并在蚀变区域的中心部分形成48μm的晶粒聚集体,该蚀变区域由细晶粒的次级刚玉和钙长石与钙长石,库仑石,水英石组成。Burnettite可能是在还原条件下由超难熔母体形成的。磷灰石可能在后期动态结晶过程中产生,也可能是析出的结果。Beckettite可能是在后期的交代反应中在母体中形成的,在这些反应中,粒状,刚玉,库仑石和锂铁矿取代了主要相,如陨石,黑石,尖晶石,钙钛矿和伯内特石。矿物和库仑石可能是同一位置的陨石中富含V的夹杂物被破坏的产物。另外,它也可能与富钒热流体中初级菱铁矿的分解一起引起刚玉。由于尺寸较小,因此无法确定新矿物的物理性质。每个物种的五个电子探针(未指定模式)分析的平均值[wt%,(标准偏差)]为:钠钙钛矿,Na2O 0.04(0.01),CaO 13.58(0.15),MgO 1.22(0.03),FeO 0.35(0.14),MnO 0.05(0.06),Al2O3 44.14(0.29),Sc2O3 0.7(0.03),V2O3 31.6(0.1),SiO2 2.02(0.03),TiO2 5.54(0.07),总计99.24,具有相应的经验公式(Ca1 .99Na0.01)∑1.00(V3.473+ Al1.40Ti0.574 + Mg0.25Sc0.08Fe0.042 + Mn0.01)∑5.82(Al5.72Si0.28)∑6.00O20(基于20 O pfu; 适用于菱镁矿/橄榄石(未给出偏差或范围):Na2O – / 0.62,CaO 24.83 / 29.58,MgO 1.51 / 0.18,Al2O3 23.36 / 15.21,V2O3 9.35 / 1.56,Sc2O3 6.89 / 0.84,SiO2 25.69 / 24.43,TiO2 8.49 / 27.51,总计100.12 / 99.93,基于经验公式Ca1.04 [(V0.293+ Sc0.24Ti0.133 + Al0.09)Ti0.134 + Mg0.08] ∑0.96(Si1.01Al0.99)∑2.00O6基于14 O pfu的4种阳离子(Ti4 + = Ti3 +)apfu /(Ca2.91Na0.11)∑3.02Ti4 + Si2(Al1.64Ti0.904 + Si0.24V0.123 + Sc0.07Mg0.03)∑3.00O14 。使用rhonite的结构获得的最佳拟合索引的膨润土的EBSD模式。贝克蒂特是三斜晶系,空间群:P1,a = 10.367,b = 10.756,c = 8.895Å,α= 106.0°,β= 96.0°,γ= 124.7°,V = 739.7Å3,Z = 2。计算的粉末XRD图谱[[dÅ(I%; hkl)]为:2.684(60; 241),2.683(68; 203),2.544(100; 420),2.541(81; 242),2.540(75; 213),2.104(84; 251),2.103(84; 204),2.089(89; 411)(Ma et al.2015)。Burnettite EBSD模式只能通过C2 / c辉石结构索引。它是单斜的,空间群C2 / c,a = 9.80,b = 8.85,c = 5.36Å,β= 105.62°,Z =4。计算出的粉末XRD图谱的主线[[dÅ(I%; hkl )]为:2.996(100; 221),2.964(33; 310),2.9909(20),2.581(41; 002),2.560(29; 131),2.535(47; 221),2.131(19; 331) ,1.650(17; 223)(Ma 2013)。使用合成高压相Ca3TiSi2(Al,Ti,Si)3O14的P321结构对EBSD的索引进行索引并提供最佳拟合。Paqueite为三角形,空间群P321 ,a = 7.943,c = 4.930Å,Z =1。计算出的粉末XRD图谱的主线为[(dÅ(I%; hkl)]:6.879(20; 010),3.093(100; 111), 2.821(68; 021),2.600(21; 120),2.300(43; 121),1.908(17; 130),1.789(28; 122)(Ma 2013)。加利福尼亚理工学院的宇宙化学家John R. Beckett,Donald S. Burnett和Julie M. Paque都用了这些新矿物的名字。DBIV Pekov,SN Britvin,AA Agakhanov,MF Vigasina和EG Sidorov(2019)埃斯莫奇石,Na3Cu6BiO4(SO4)5,一种来自俄罗斯堪察加半岛托尔巴奇克火山的新型富马酸矿物。欧洲矿物学杂志,31(5-6),1025–1032.IV佩科夫,SN布里文,AA Agakhanov,MF Vigasina和EG Sidorov(2019)埃斯莫奇石,Na3Cu6BiO4(SO4)5,这是一种来自托尔巴奇克火山的新型富马酸矿物,堪察加半岛,俄罗斯。欧洲矿物学杂志,31(5-6),1025–1032。钙钼矿(IMA 2018-015),理想地是Na3Cu6BiO4(SO4)5,单斜晶,发现于2013年7月,单个样品中,深度约为〜在Arsenatnaya fumarole的中部1 m,堪察加半岛最大托尔巴奇克裂隙爆发北部突破的第二个火山口锥体。它是在不低于350-400°C的温度下直接从热气中沉积的无氢碱式铜铜氧化物硫酸盐的新代表。新的矿物与红铁矿,赤铁矿,兰贝纳石,磷灰石,krasheninnikovite和长辉石相关。弹性白云石形成层状的二次方或矩形,其切点的晶体在[001]上展平,最大可达0.005×0.07×0.1 mm,可以分离或组合成最大0.3 mm的开孔团簇,或在表面上形成不连续的结壳,最大可达1×1 mm富马酸气改变了玄武岩矿渣。弹闪石为绿色,透明,具有强烈的玻璃光泽和淡绿色的条纹。它是脆性的,具有不均匀的断裂,没有观察到分裂或分离。由于晶体尺寸小和聚集体的开孔性质,无法测量莫氏硬度和密度。Dcalc = 3.844g / cm 3。弹性白云石是强多疏性的O(草绿色)> E(绿松石蓝色),光学伪单轴(–),α= 1.611(2),β=γ= 1.698(2),2V≈0°(589 nm) 。拉曼光谱中的谱带(cm-1; s –强)为:1283s,1208、1098 [SO42-的F2(ν4)弯曲];1039、1010s,996s [SO42−的A1(ν1)对称拉伸],668、627、584 [SO42−的F2(ν4)弯曲],503、445 [SO42−的E(ν2)弯曲],268、190s和124(晶格模式)。550–250 cm–1处的特征也可以分配给Bi3 + –O和Cu2 + –O拉伸振动。频率高于1300 cm-1的谱带不存在,表明不存在具有O–H,CH–,CH–O,NH和N–O键的基团。平均7点WDS电子探针分析为[wt%,(范围)]:Na2O 6.67(6.50–6.87),K2O 0.82(0.70–0.90),CuO 38.77(38.37–39.34),ZnO 0.25(0.00–1.06),PbO 3.17(2.75-3.64),Bi2O3 17.66(17.17–18.84),SO3 32.81 (32.42–33.04),总计100.15。基于24个O原子pfu的经验公式为Na2.63K0.21Cu5.96Zn0.04Bi0.93 S5.01O24。粉末X射线衍射图的最强线是[dÅ(I%; hkl)]:10.33(100; 002),7.04(18; 110,111),6.33(14; 111,112),3.576(24; 221) ,2.920(14; 225),2.529(14; 402,040),2.460(14; 227)。单晶XRD数据显示,弹辉石为单斜晶(伪四方晶),P21 / n,a = 10.1273(9),b = 10.1193(8),c = 21.1120(16)Å,β= 102.272(8)°, V = 2114.1Å3,Z =4。仅用模型作为模型,采用双空间法求解晶体结构并将其细化为R1 = 20.6%。尽管R1值很高,热位移参数和原子间距离的可靠值,键合价之和的好值,测量和计算的粉末XRD图之间的良好一致性,结构式中的零电荷平衡及其与电子微探针数据的一致性,证实了晶体结构模型是正确的。它是一种新颖的结构,包含两种类型的交替多面体层:(1)由[BiO4O2]多面体,[CuO5]方金字塔和[CuO4]正方形组成的“铜-铋板”和(2)组成的“钠板” [NaO5]和[NaO6]多面体。所有阳离子多面体均通过角共享[SO4]四面体连接。弹闪石与铌铁矿KCu7Te4 + O4(SO4)5Cl和钟乳石PbCu6BiO4(Se4 + O3)4(OH)·H2O具有一些共同的结构特征。该名称以希腊文ελασµα(意为薄片和χλοη)为基础,意思是绿芽或绿草,因此暗示了弹性石的绿色和层状晶体习性。类型标本存放在俄罗斯莫斯科的俄罗斯科学院费斯曼矿物学博物馆。Yu.UL Bindi,F.Zaccarini,E.Ifandi,B.Tsikouras,C.Stanley,G.Garuti和D.Mauro(2020)Grammatikopoulosite,NiVP,一种来自希腊Othrys蛇绿岩中铬铁矿的新磷化物。矿物,10(2),131.F. Zaccarini,L.Bindi,E.Ifandi,T.Grammatikopoulos,C.Stanley,G.Garuti和D.Mauro(2019)Tsikourasite,Mo3Ni2P1 + x(x <0.25),一种来自奥氏硅藻土的亚铬铁矿的新磷化物,希腊。矿物,9(4),248.L. Bindi,F.Zaccarini,E.Ifandi,B.Tsikouras,C.Stanley,G.Garuti和D.Mauro(2020)Grammatikopoulosite,NiVP,一种来自奥特莱斯蛇绿岩中铬铁矿的新磷化物,希腊。矿物,10(2),131.F. Zaccarini,L.Bindi,E.Ifandi,T.Grammatikopoulos,C.Stanley,G.Garuti和D.Mauro(2019)Tsikourasite,Mo3Ni2P1 + x(x <0.25),一种来自奥氏硅藻土的亚铬铁矿的新磷化物,希腊。矿物,9(4),248.在重金属中发现了两种新的磷化物:葛兰素磷矿(IMA 2019-090),NiVP,斜方晶系,钛铁矿(IMA 2018-156),Mo3Ni2P1 + x(x <0.25),立方。从由蛇纹石组成的地幔构造体和含斜长石的荷绿铁矿的少量插层中,在强烈蛇纹石化的辉光岩中包裹的,从裙状亚铬铁矿中分离出的矿物精矿。铬铁矿的主要成分是镁铬铁矿。缝隙组件普遍被亚氯酸盐,水硬脂石和次要滑石粉和蛇纹石代替。在本地 氢石榴石充填最大厚度为50 µm的横切镁铬铁矿的静脉。这些脉脉可能与黄化的辉长岩横切铬铁矿有关。石榴石的水成矿脉中也出现了稀有的钛矿,钾铁矿,方铁矿和Millerite。讨论了磷化物沉淀的遗传模型。在希腊中部中生代Othrys蛇绿岩综合体Domokos村以南约10公里处的Agios Stefanos废弃矿山中收集到的约10 kg大型亚铁矿石,通过加工(粉碎,重液处理,淘选等)获得的精矿。重矿物在环氧块中制备。在采样和后续处理期间,不可能有污染源。在抛光的部分中,以一般分离的晶粒小于10 µm的情况出现grammatikopoulosite和tsikourasite,很少会出现〜80 µm的情况。在多相晶粒中,它们相互关联,并与磷化镍,磷灰石和潜在的新矿物(正在研究中)缔合,例如镍铝辉石或镍钡锰铁矿和V型硫化物。抛光部分中的其他矿物包括PGM:Ru-Os-Ir-Ni合金,月桂石,钙锰矿,Pd-Sb-Cu合金,Pd-Cu-Pt合金,异铁石,铂铁矿,hollingworthite,梅伦石和堇青石-辉石。两种新矿物均具有金属光泽,不透明且易碎。由于尺寸小,未测量密度和硬度。其他特性和特征如下:反射光中的菱锰铜石呈乳黄色,弱双反射,具有可测量但无法辨别的多色性,并且具有轻微的各向异性和不确定的旋转色度。没有观察到内部反射。空气中的反射率值(R1 / R2%λnm)为(COM波长为粗体):47。6 / 48.8 400、47.9 / 49.1 420、48.3 / 49.4 440、48.6 / 49.9 460、48.8 / 50.3 470、49.0 / 50.7 480、49.4 / 51.5 500、49.9 / 52.4 520、50.3 / 53.3 540、50.5 / 53.5 546, 50.9 / 54.1 560、51.4 / 54.9 580、51.7 / 55.2 589、51.9 / 55.5 600、52.4 / 56.2 620、53.0 / 56.8 640、53.2 / 57.1 650、53.8 / 58.0 680、54.2 / 58.6 700.五个点的平均值电子探针WDS分析[wt%(范围)]为:Ni 21.81(21.69–21.98),Co 16.46(16.33–16.66),Fe 3.83(3.78–3.86),V 20.85(20.48–21.05),Mo 16.39(16.20– 16.72),Si 0.14(0.13-0.16),P 19.90(19.65-20.38),S 0.41(0.39-0.42),总计99.79。基于ΣMetals= 2 apfu并考虑结构结果的经验公式为M1(Ni0.57Co0.32Fe0.11)Σ1.00M2(V0.63Mo0.26Co0.11)Σ1.00(P0.98S0.02)Σ1.00 。最强的X射线粉末衍射线为[dÅ(I%; hkl)]:4.43(10; 101),2.950(20; 102),2.785(25; 111),2.273(60; 112),2.157( 100; 211),2。118(25; 103),1.784(20; 020)。从粉末数据精炼的晶胞参数为a = 5.8088(2),b = 3.5993(2),c = 6.8221(3)Å,V = 142.63Å3。单晶XRD数据表明,葛兰素硅藻土是正交晶的,空间群为Pnma,a = 5.8893(8),b = 3.5723(4),c = 6.8146(9)Å,V = 143.37Å3,Z = 4; Dcalc = 7.085g / cm 3。对于465 Fo>4σ(Fo)反射,对结构进行了细化(从全铝辉石FeNiP的原子坐标开始)至R1 = 0.0276。Grammatikopoulosite属于具有Co2Si结构的天然磷化物(弗洛仑石FeTiP,钠钙铝石(Fe,Ni)2P和锰铁矿FeCrP)。在结构中,M1连接四个P原子和八个M2,而M2连接五个P,六个M1和两个M2。M1协调球中的M-P距离比M2短。如果在M原子的配位多面体中仅考虑M-P距离,则可以观察到沿b轴形成角共享链的M1P4四面体或沿a轴形成之字形链的M2P5四棱锥。矿物名称是SGS Canada Inc.的地球学家Tassos Grammatikopoulos(生于1966年)的荣誉,表彰他为希腊的经济矿物学和矿藏做出的贡献。整型材料沉积在意大利比萨大学的自然博物馆中,反射光中的Tsikourasite是白色黄色,没有双折射,各向异性或多色性。未观察到内部反射,空气中的反射率值(R%λnm)为(COM波长为粗体):54.6 400、54.9 420、55.2 440、55.5 460、55.7 470、55.8 480、56.1 500、56.4 520、56.7 540 ,56.8 546、57.0 560、57.3 580、57.5 589、57.6 600、58.0 620、58 3 640、58.5 650、58.6 660、58.9 680、59.2700。五点电子探针WDS分析的平均值[wt%(范围)]为:Ni 23.9(23.77-24.16),Co 7.59(7.53-7.72),Fe 1.18(1.14–1.20),V 14.13(13.98–14.19),Mo 44.16(43.56–44.65),P 7.97(7.59–8.20),S 0.67(0.64–0.71),总计99.60。基于∑Metals = 5 apfu并考虑结构数据的经验公式为(Mo1.78V1.07Fe0.08Co0.07)∑3.00(Ni1.57Co0.43)∑2.00(P0.98S0.08)∑1.06。没有获得粉末XRD数据。计算出的X射线粉末衍射图的最强线是[dcalcÅ(Icalc%; hkl)]:2.705(13; 400),2.483(12; 331),2.209(42; 422),2.083(65; 422) ),2.083(35; 511),1.913(21; 440),1.275(14; 660),1.275(17; 822)。单晶研究表明,钛铁矿为立方体,空间群为F43m,a = 10.8215(5)Å,Z = 16;Dcalc = 9.182g / cm 3。细化晶体结构(从1350°C合成的Mo3Ni2P1.16化合物的原子坐标开始),对于216 I>2σ(I)的反射,R1 = 0.0188。与Mo-P和Ni-P键相比,铁钛矿结构显示出许多金属-金属键(Ni-Ni,Mo-Ni和Mo-Mo)。金属原子仅与两个或三个P原子连接,而12或6个金属原子分别围绕P1和P2位。在结构中,Mo原子以[PMo6]-八面体的形式排列在菱形网络中。由Mo2原子构成的八面体的一半是空的,而由Mo1原子形成的后半部分则被P2占据,这表明部分占有(20%)。这些占用的八面体显示在fcc数组中。与钛铁矾不同,其组成相似,黑橄榄石MoNiP,碳钙锰矿MoNiP2和合成MoNiP2为六角形。Tsikourasite可能代表最近在Alapaevsk(俄罗斯)和Gerakini-Ormylia(希腊)蛇绿岩的铬铁矿中发现的成分(Ni,Fe)5P晶粒的Mo当量(Sideridis等人2018)。矿物授予文莱达鲁萨兰国大学的Basilios Tsikouras(生于1965年),以表彰他对矿石的矿物学和与蛇绿岩有关的矿藏的贡献。该类型的材料存放在意大利佛罗伦萨大学的自然博物馆。DBSN Britvin,M。Murashko,Y。Vapnik,YS Polekhovsky,SV Krivovichev,OS Vereshchagin,VV Shilovskikh,NS Vlasenko和MG Krzhizhanovskaya(2020)Halamishite,Ni5P4,是一种Ni-P系统中的新型陆地磷化物。矿物物理与化学,47,3.SN Britvin,Y.Vapnik,YS Polekhovsky,SV Krivovichev,MG Krzhizhanovskaya,LA Gorelova,OS Vereshchagin,VV Shilovskikh和AN Zaitsev(2019)Murashkoite,FeP,一种来自南黎凡特Hatrurim地层亚变质岩的新型陆地磷化物。矿物学和岩石学,113(2),237-248.SN Britvin,MN Murashko,Ye。Vapnik,YS Polekhovsky,SV Krivovichev,OS Vereshchagin,VV Shilovskikh和MO Krzhizhanovskaya(2020)钠铁矿,黄铁矿型NiP2,一种新的陆地磷化物。American Mineralogist,105(3),422-427。SNBritvin,MN Murashko,Ye。Vapnik,YS Polekhovsky,SV Krivovichev,MO Krzhizhanovskaya,OS Vereshchagin,VV Shilovskikh和NS Vlasenko(2020年)Transjordanite,Ni2P,一种新的陆地和陨石磷化物以及天然固溶钡铁矾-Transjordanite(六方Fe2P–Ni2P)。American Mineralogist,105(3),428-436。SNBritvin,M。Murashko,Y。Vapnik,YS Polekhovsky,SV Krivovichev,OS Vereshchagin,NS Vlasenko,VV Shilovskikh和AN Zaitsev(2019)Zuktamrurite,FeP2,一种新矿物,铝绿榴石的磷化物类似物FeAs2。矿物的物理和化学,46,361-369.SN Britvin,M.Murashko,Y.Vapnik,YS Polekhovsky,SV Krivovichev,OS Vereshchagin,VV Shilovskikh,NS Vlasenko和MG Krzhizhanovskaya(2020)Halamishite,Ni5P4,一个新的Ni-P系统中的陆地磷化物。矿物物理与化学,47,3.SN Britvin,Y.Vapnik,YS Polekhovsky,SV Krivovichev,MG Krzhizhanovskaya,LA Gorelova,OS Vereshchagin,VV Shilovskikh和AN Zaitsev(2019)Murashkoite,FeP,一种新的陆生磷化物南黎凡特Hatrurim组的火山成岩。矿物学和岩石学,113(2),237-248.SN Britvin,MN Murashko,Ye。YS瓦普尼克 Polekhovsky,SV Krivovichev,OS Vereshchagin,VV Shilovskikh和MO Krzhizhanovskaya(2020)Negevite,黄铁矿型NiP2,一种新的陆地磷化物。American Mineralogist,105(3),422-427。SNBritvin,MN Murashko,Ye。Vapnik,YS Polekhovsky,SV Krivovichev,MO Krzhizhanovskaya,OS Vereshchagin,VV Shilovskikh和NS Vlasenko(2020年)Transjordanite,Ni2P,一种新的陆地和陨石磷化物以及天然固溶钡铁矾-Transjordanite(六方Fe2P–Ni2P)。American Mineralogist,105(3),428-436.SN Britvin,M.Murashko,Y.Vapnik,YS Polekhovsky,SV Krivovichev,OS Vereshchagin,NS Vlasenko,VV Shilovskikh和AN Zaitsev(2019)Zuktamrurite,FeP2,新矿物,硅铝石的磷化物类似物FeAs2。矿物物理与化学,46,361–369。五种新天然 陆地磷化物:蓝铁矿(IMA 2013-105),Ni5P4,六角形; murashkoite(IMA 2012-071),FeP,斜方晶; 白云母(IMA 2013-104)立方NiP2;透闪石(IMA 2013-106),Ni2P,六角形; 在Hatrurim组(“斑驳带”)的亚变形组合中发现了斜方晶石和正交晶方石(ukatamrurite)(IMA 2013-107)。这是世界上最大的,具地质学意义的亚成岩类组合,分布在以色列,巴勒斯坦权力机构和约旦的死海周围150×200 km的领土上。Hatrurim组的白垩质沉积物经历了广泛而反复的高温(500–1350°C)和低压(〜1 bar)变质〜2.3–4 Ma。两种最流行的假设解释了高温和(在许多情况下)强烈燃烧环境的降低,这是由于燃烧富含沥青的沉积单元或泥浆火山爆炸中烃类(主要是甲烷)的燃烧所致,而火山爆发是由该地区的构造活动引发的。死海变形断层。磷化物通常被认为具有陨石起源。在Hatrurim地层中的Schreibersite Fe3P和Barererite Fe2P的岩石中发现了一堆新的陆地磷化物,显示M / P比率的变化很大,使其与陨石矿物大不相同。“斑驳带”的磷化物缔合是地球上最丰富的带有铁盐亲铁而不是石硫磷的共生体实例。在以色列内盖夫沙漠哈特里姆盆地南部的Nahal Halamish(Halamish wadi)死海(黎凡特)转换断层的两侧发现了两个含磷的位置(北纬31°09′47″;北纬35°17) '57” E)和Al-Rasas分区Transjordan高原的Daba-Siwaqa矿区,约旦安曼南南80公里(31°21'52“; N,36°10'55” E )。位置之间的距离约为100公里。在哈拉米什河谷中,磷化物以细粒形式散布在由无色,几乎纯净的透辉石(〜50–60 vol%)组成的水热蚀变微角砾岩中。其他伴生矿物是绢云母,铜水辉石,赤铁矿,磁铁矿,黄铁矿,水银石,含水的X射线无定形硅酸盐以及钙,镁,铁,镍,碳酸钙和硫酸盐的氢氧化物。缝隙中充满了方解石,氟磷灰石,蒙脱石和未知的Ca-Fe-Ni-Mg含水磷酸盐。闪锌矿(晶粒度最大为20μm)和钠钙石(晶粒度最大为15μm)与zuktamrurite(晶粒度约为10μm,很少会达到50μm,有时会容纳辉钼矿的片晶),透水辉石(晶粒度最大为0.2 mm) ,murashkoite(粒度为10-200μm,很少到2 mm,通常与钡镁铁矿共生),以及未命名的磷化镍-硫化物。Murashkoite还可以在含水硅酸盐的基质中形成树枝状聚集体。在Daba-Siwaqa复合物中,发现相同的磷化物缔合体(除蓝闪石外)散布在中等粒度的斜辉石(透辉石-水母辉石)-辉长辉石-钙长石组成的钙长石斜长石的厘米大小的脉中,从而横切了异质煅烧的大理石砾石。巴拉瓦斯的次要矿物是钠铅矿,鳞石英,方石英与辅助磁铁矿,三方沸石,黄铁矿,赤铁矿,绢云母和氟磷灰石。这种主要的缔合部分被晚期的低温碳酸盐,硅酸盐和硫酸盐取代。在1818年在美国纽约州尼亚加拉县洛克波特附近发现的未成团的铁陨石坎布里亚中也发现了透闪石,重结晶的微颗粒(10–20μm)闪锌矿中充填了细角砾化的schreibersite碎片,经常包裹着5–10μm厚的洋葱。亚微晶变色长石-钡锰矿组成的类轮辋,晶粒尺寸小于0.5μm。闪石为深灰色,变色石为灰白色或灰色,穆拉克石为淡黄色。在反射光下,它们是白色的,具有米色。由于祖克绿石和钠钙铁矿的体积小,没有给出宏观的颜色,但是在反射光下,两者都是白色的,带有蓝色,这对于透闪石而言更为独特。所有五种新的磷化物均具有金属光泽,非疏油性,脆性(其晶粒通常会破裂),没有分裂迹象。没有测量密度值。获得了穆拉什克矿(VHN20 = 468 kg / mm2,相当于莫氏硬度的〜5)和透闪石的微压痕硬度数据(658 kg / mm2)。其他特征如下:金缕石,具有中等各向异性和双反射性(ΔR589= 7.2%)。反射率值[Rmax / Rmin%λnm] COM波长以粗体显示:40.3 / 34.5 400; 41.5 / 35.2 420;42.5 / 36.3 440;43.7 / 37.3 460;44.3 / 36.6 470;44.8 / 35.8 480;46.2 / 39.6 500;47.7 / 40.7 520;48.9 / 41.9 540;49.2 / 42.1 546;50.0 / 42.7 560;50 9 / 43.7 580;51.3 / 44.1 589; 51.7 / 44.5 600;52.4 / 45.3 620;53.0 / 45.8 640;53.3 / 46.1,650; 53.6 / 46.5 660;54.2 / 46.9 680;55.0 / 47.5 700.三种全电子探针EDS分析的平均值(重量%):Ni 69.23,Fe 1.80,P 29.59,总计100.62(未给出范围或偏差)。基于9个原子pfu的经验公式为(Ni4.90Fe0.13)5.03P3.97。Dcalc = 6.249g / cm 3。未获得粉末XRD数据。计算出的XRD粉末图案中最强的线[dcalcÅ(Icalc%; hkl)]为:3.121(45; 103),2.953(56; 200),2.498(57; 104),2.069(57; 212),2.015 (88; 204),1.938(69; 301),1.908(77; 213),1.735(100; 214),1.705(58; 220)。在0.01×0.01×0.01 mm的晶粒上获得的单晶XRD数据显示,闪石为六方晶,空间群为P63mc,a = 6.8184(4),c = 11.0288(8)Å,V = 444.04Å3,Z = 4 。根据425个观察到的独特[I≥2σ(I)]反射,对晶体结构进行了解析,并将其精炼为R1 = 0.031。它包含八个独特的Ni和P位。闪石结构的一个显着特征是与硫化物结构中的S-S哑铃相似的短P-P键(2.196Å)“ P-P哑铃”。合成的Ni5P4类似金刚石类似物,广泛用于电催化和光催化应用。由于化学成分接近末端元素Ni5P4,因此可以使用蓝闪石作为地热仪,表明在870°C以下的温度下发生了磷化物的形成。该矿物因其类型所在地Halamish wadi而得名。该全形样品存放在俄罗斯圣彼得堡国立大学矿物学系矿物学博物馆,Murashkoite是弱双折射ΔR(589 nm)= 1。2%的各向异性,从黄灰色到灰蓝色旋转。内插COM波长的反射率值[Rmax / Rmin%λnm]以粗体显示:42.7 / 40.8 400;41.9 / 40.0 420;41.5 / 39.8 440;41.6 / 39.9 460;41.65 / 40.0 470;41.7 / 40.1 480;42.0 / 40.6 500;42.2 / 40.7 520;42.7 / 41.5 540;42.9 / 41.7 546;43.3 / 42.1 560;43.9 / 42.7 580;44.2 / 43.0 589;44.5 / 43.4 600;45.2 / 44.3 620;45.9 / 45.2 640;46.3 / 45.6、650;46.6 / 46.0 660;47.2 / 46.9 680;48.0 / 47.7 700.从100多种分析中选择的代表性化学成分(电子探针,EDS)的范围(重量%)为:Fe 51.63–64.34,Ni 0–13.25,P 34.84–36.49(Co低于0.05%)。未确定的全型分析的平均值为(wt%)Fe 63.82,Ni 0.88,P 35.56,总计100.26; 并基于2 apfu的相应经验公式:(Fe0.99Ni0.01)1.00P1.00。Dcalc = 6.108g / cm 3。粉末XRD图谱的最强线[dÅ(I%; hkl)]为:2.831(75; 011,002),2.548(22; 200),2.477(46; 102,111),1.975(47; 112),1.895( 100; 202,211),1.779(19; 103),1.632(45; 013,301,020)。从粉末数据精炼的晶胞参数为a = 5.098(5),b = 3.251(1),c = 5.699(3)Å,V = 94.5Å3。在0.05×0.06×0.12 mm的晶体上获得的单晶XRD数据表明,穆拉什石是正交晶的,空间群Pnma,a = 5.099(2),b = 3.251(2),c = 5.695(2)Å,V = 94.41Å3,Z =4。对于131个独特的I>2σ(I)反射,求解晶体结构并将其细化为R1 = 0.0305。Murashkoite结晶为MnP结构类型,该结构是镍的NiAs六方马氏体结构的正交畸变同型。murashkoite的晶体结构基于沿a轴交替排列的Fe和P原子层。Fe原子层是一个扭曲的平面36网,由沿b轴延伸的Fe-Fe原子链组成。P原子层是一个非平面的36网状结构,没有PP接触短于3Å。Fe的配位是畸变的FeP6八面体,另外还有四个Fe-Fe键。P位置由六个Fe原子与两个PP互补,以扭曲的三角棱柱形配位。穆拉什科特(Mashashkoite)是韦斯特维尔德(Festerveldite)FeAs的磷化物类似物,属于其中的唯一磷化物的莫德莱德族。Murashkoite是合成FeP的天然替代物,后者是广泛用于非均相催化和电催化的化合物。矿物名称是Mikhail Nikolaevich Murashko(生于1952年)的名字,对哈特里姆岩层的矿物学的贡献。的整型标本存放在俄罗斯圣彼得堡矿业学院博物馆(技术大学)中。黑云母是各向同性的,没有内部反射。带有粗体COM波长[R%,λnm]的反射率值为:53.6 400、53.9 420、54.3 440、54.5 460、54.6 470、54.6 480、54.8 500、54.9 520、55.0 540、55.0 546、55.1 560、55.2 580、55.3 589、55.3 600、55.4 620、55.5 640、55.6 650、55.7 660、55.6 680、55.8 700.选定的代表性化学成分(电子探针,WDS)的范围(重量%)为:Fe 2.876.41,镍37.77-42.57,钴2.92-3.40,银0-1.01,磷39.51-42.93,硫8.33-12.78,硒0-0.24。未确定的全型分析的平均值为(wt%)Fe 2.87,Ni 42.57,Co 3.40,P 42.93,S 8.33,总计100.10; 并基于3个apfu的相应经验公式:(Ni0.88Co0.07Fe0.06)∑1.01(P1.68S0.31)∑1.99。Dcalc = 4.881g / cm 3。白云母不溶于冷的10%HCl中。未获得粉末XRD数据。计算出的XRD粉末图案中最强的线[dcalcÅ(Icalc%; hkl)]为:3.165(54; 111),2.741(95; 002),2.451(42; 012),2.238(35; 112),1.938 (54; 022),1.653(100; 113),1.582(17; 222),1.465(17; 123)。在〜10 µm晶粒上获得的单晶XRD数据表明,白云母为立方晶,空间群为Pa3,a = 5.4816(5)Å,V = 164.71(3)Å3,Z = 4。对于52个独立的I>2σ(I)反射,精确到R1 = 1.73%。白云母是黄铁矿结构类型的第一种天然磷化物。它是钙钛矿(NiS2),铝矾土(NiAs2)和Penroseite(NiSe2)的结构类似物。白云母的合成对应物具有良好的催化和光催化性能。白云母以其类型所在地在以色列内盖夫沙漠而得名。整形体沉积在俄罗斯圣彼得堡国立大学矿物学博物馆中。透闪石为弱双折射ΔR(589 nm)= 1.8%,且各向异性较弱。反射率值[Rmax / Rmin%λnm],COM波长为粗体:41.0 / 40.2 400; 42.2 / 41.1 420;43.2 / 42.4 440;44.5 / 43.5 460;45.1 / 44.2 470;45.7 / 44.8 480;47.1 / 46.1 500; 48.3 / 47.3 520; 49.6 / 48.3 540;49.9 / 48.5 546;50.7 / 49.1 560;51.6 / 49.9 580;52.1 / 50.3 589;52.6 / 50.8 600;53.4 / 51.4 620;54.0 / 51.9 640;54.3 / 52.1 650;54.5 / 52.3 660;55.0 / 52.6 680;55.5 / 53.0 700.钙铁矿(Ni2P)和钡镁石(Fe2P)的最终成员之间存在一系列完整的天然固溶体。其他元素的变化(wt%)为:P 20.39–21.72,Co 0–3.09,Mo 0–3.09和S至0.27(在寒武纪陨石中)。整型/坎布里亚陨石中钙铁矿的电子探针WDS分析的未指定平均值(wt%)为:Ni 67.80 / 60.55,Fe 10.20 / 18.16,Co 0 / 0.26,P 21.50 / 20.53,S 0 / 0.27,总计99.50 / 99.77。基于3个apfu的相应经验公式为(Ni1.72Fe0.27)∑1.99P1.02 /(Ni1.52Fe0.48Co0.01)∑2.01(P0.98S0.01)∑0.99。Dcalc = 7.297(5)g / cm 3。粉末XRD图谱的最强线[(dÅ(I%; hkl)]为:2.211(100; 111),2.028(42; 201),1.926(37; 210),1.697(21; 300),1.676 (18; 002),1.672(18; 211),1.264(15; 212),1.192(15; 302),1.104(20; 321)。对0.08×0.06×0.05 mm晶粒的单晶研究表明,钙铁矿是六角形,空间群P62m;整型的晶胞参数为:a = 5.8897(3),c = 3.3547(2)Å,V = 100.78Å3,Z =3。对于190个独立观察到的分子,将其晶体结构解析并精炼为R1 = 0.013 I> 2σ(I)反射。它由沿c轴传播的两种无限杆组成。第一杆由与空的方形金字塔☐P5交替的角共享M(1)P4四面体组成。下一个杆由边共享的M(2)P5方形金字塔和空的四面体☐P4组成。棒通过相邻的金属-磷多面体的公共P-P边缘排列成框架。该矿物以西约旦Transjordan高原上的典型类型命名。原型是在俄罗斯圣彼得堡国立大学矿物学博物馆沉积的.Zuktamrurite是弱双折射ΔR(589 nm)= 2。8%,各向异性,带蓝色旋转色。内插COM波长的反射率值(Rmax / Rmin%λnm)以粗体显示:52.5 / 49.8 400;51.8 / 48.9 420;51.2 / 48.2 440;50.6 / 47.5 460;50.4 / 47.2 470;50.2 / 46.9 480;49.8 / 46.7 500;49.5 / 46.4 520;49.2 / 46.3 540;49.16 / 46.23 546; 49.0 / 46.2 560;49.0 / 46.2 580;48.97 / 46.16 589; 49.0 / 46.2 600;49.1 / 46.2 620;49.3 / 46.3 640;49.40 / 46.40 650;49.5 / 46.5 660;49.8 / 46.7 680;50.0 / 47.0700。选择的20种代表性电子探针EDS分析的范围(重量%)为:Fe 37.37–46.76,Ni 1.37–9.84,Co 00.69,P 47.50–53.74)。S 0–4.52。整体型五点分析的平均值为(wt%)Fe 40.23,Ni 7.97,P 51.70,总计99.90; 并基于3 apfu的相应经验公式:(Fe0.86Ni0.16)1.02P1.98。Dcalc = 5.003g / cm 3。粉末XRD图谱的最强线是[(dÅ(I%; hkl)]:3.714(54; 110),2.820(31; 020),2.451(100; 120,101),2.259(25; 210),2.242(55; 111); 1.760(37; 211),1.579(23; 310),1.564(26; 031)。从粉末数据精炼的晶胞参数为a = 4.927(5),b = 5.645(1),c = 2.815(3)Å,V = 78.3Å3。在0.01×0.01×0.01 mm的晶体上获得的单晶XRD数据表明,柱状铝镁矿为正交晶,空间群为Pnnm,a = 4.9276(6),b = 5.6460(7),c = 2.8174(4)Å,V = 78.38Å3,Z =2。采用直接方法求解晶体结构,并基于109次独特的I>2σ(I)反射将其精炼为R1 = 0.0121。Zuktamru-rite是卢宁石FeAs2的磷化物类似物。扭曲的八面体MP6(M = Fe,Ni)布置成将公共边共享为沿c轴传播的无限链。c轴的长度对应于最短的M–M距离。属于相邻链条的八面体通过共享角相互连接,从而形成三维框架。zuktamrurite结构的特征是在白铁矿中像S–S一样存在P–P键。zuktamrurite中的P–P哑铃起着阴离子的作用,其结构式可写为Fe2 + [P2] 2-。Zuktamrurite是迄今为止自然界中发现的最富磷的磷化物。矿物的名称是Zuk-Tamrur悬崖(死海),该悬崖位于当地(Halamish Wadi)类型附近。完整标本保存在俄罗斯圣彼得堡国立圣彼得堡大学矿物学博物馆中。DBIV Pekov,NV Zubkova,VO Yapaskurt,DI Belakovskiy,IS Lykova,SN Britvin,AG Turchkova和DY Pushcharovky(2019)Kamenevite,K2TiSi3O9⋅H2O,一种来自俄罗斯科拉半岛Khibiny碱性复合物的具有微孔钛硅酸盐骨架的新型矿物。《欧洲矿物学杂志》,31(3),557–564.IV佩科夫,内华达·祖科娃,VO亚帕斯库特,DI贝拉科夫斯基,IS利科娃,SN布里特文,AG Turchkova和DY Pushcharovky(2019年)Kamenevite,K2TiSi3O9⋅H2O,一种新矿物来自俄罗斯科拉半岛Khibiny碱金属配合物的微孔钛硅酸盐骨架。欧洲矿物学杂志,31(3),557–564.Kamenevite(IMA 2017-021),理想的是正交晶形的K2TiSi3O9⋅H2O,是在富含钾的高碱性伟晶岩中发现的,其与锂辉石与磷灰石-霞石岩石相关,分布在两个矿床:奥兰尼·鲁奇(Oleney Ruchey)(驯鹿溪)地下矿山 Suoluaiv和Rasvumchorr矿山 Rasvumchorr,Khibiny建筑群,可乐半岛,俄罗斯。整形标本起源于伟晶岩,伟晶岩在奥勒尼·鲁奇·磷灰石矿床的堆积物中被发现。伟晶岩主要由钾长石,霞石,方钠石,a石碱,Arfvedsonite系列闪石,辉绿岩,绿蒙脱石,常绿辉石以及辅助的shcherbakovite,闪锌矿,方铅矿和辉钼矿组成。在伟晶岩的某些部分中发现了富含热针状mineral精的热液矿物质(方沸石,维缕石,钙锰矿,sha石)。次要矿物质有石,西多伦凯特,硬水铝石,锂辉石和含钠新滑石。钾钠长石代替了菱锰矿,并在略微腐蚀的菱锰矿的晶体中填充了裂缝。它形成高达0.02×0.1×0.3 mm的粗片状晶体。晶体的聚集体最大可达0.7毫米。单个晶体为矩形或不规则晶体,并在[010]上展平。ac形{010}是主要的晶体形式,侧面可能是pin形{100}和{001}。后来在类似的组合物的辉晶岩中发现了一种由在Rasvumchorr地下磷灰石+470 m水平开采的倾倒物料中的Kamenevite,该辉晶岩主要由钾长石,霞石,方钠石,富含Na-Mg-Fe3 +的扁石,钠镁,钾盐组成。钠钾钠锰矿,萤石钠盐,优色岩和硅锰矿;含有次要的和辅助的堇青石,氟磷灰石,shcherbakovite,lobanovite,闪锌矿,方铅矿和辉钼矿。散晶伟晶岩含有丰富且异常多样的(尤其是部分富钾的硅酸盐和硫化物)热液矿化作用,形成高达20 cm的透镜状或不规则巢状。这些巢是由沸石制成的,钠云母石,硅镁矾石,氟锌矿类矿物、,石,钙钛矿,钛铁矿,磷灰石-(Ce),伞石,钛铁矿,锂铁矿,重晶石,钙铝榴石,磷灰石,ch石,磷灰石富含K的vishnevite,隐叶沸石,shlykovite,mountainite,氟疏藻石-(K),新滑石,钴矿,水母石,绿泥石和锂辉石。在Rasvumchorr矿山中,Kamenevite的出现是宽度等于0.15 mm的均匀或扁平的颗粒,或者是嵌入在不同含水硅酸盐骨料中的最大0.1×0.4 mm的海绵状和颗粒状堆积物。Kamenevite与Shafranovskite,蚀变的锂铁矿和锂锰矿密切相关。新矿物是透明的,单个颗粒无色,聚集体为白色。它具有白色条纹和玻璃光泽。Kamenevite易碎,具有阶梯状断裂,在{010}上具有良好的裂解。莫氏硬度为约。4; Dmeas = 2.69(2)和Dcalc = 2.698 g / cm3(均为整型)。在平面偏振的透射光中,钾钙锰矿是无色,非疏油性的。它是光学双轴(–),α= 1.650(4),β= 1.678(5),γ= 1.685(5)(589 nm),2Vmeas = 60(10)°,2Vcalc = 52°;Y = b。没有观察到光轴的分散。完整型的4种WDS分析的平均值[wt%(范围)]为:Na2O 0.48(0.21-0.69),K2O 24.37(24.11-24.53),CaO 0.13(0.10-0.16),Fe2O3 0.35(0.13-0.52), SiO2 48.78(47.19–50.29),TiO2 20.30(19.75–20.66),ZrO2 0.89(0.41–1.83),Nb2O5 0.35(00.63),H2O 4.85(通过基于1 H2O pfu的结构改进),总计100.50。基于10个O原子pfu的经验公式为(K1.92Na0.06Ca0.01)Σ1.99(Ti0.94Zr0)。03Fe0.02Nb0.01)Σ1.00S3.01O9·H2O。粉末X射线衍射图中最强的线是[dÅ(I%; hkl)]:7.92(70; 110),6.51(47; 020),5.823(95; 101),2.988(84; 301,122) ,2.954(100; 041,320),2.906(68; 311,202),2.834(69,141,212)。通过直接方法解决了金刚玉的晶体结构,并将其精炼至R1 = 3.84%。新矿物是正交晶,P212121,a = 9.9166(4),b = 12.9561(5),c = 7.1374(3)Å,V = 917.02(6)Å3,Z = 4。由[Si3O9]∞硅灰石型链与孤立的以钛为中心的八面体连接的微孔异质多面体框架。K +阳离子和H2O基团位于较宽和较窄的[001]通道中。钾钠锰矿是同构的,具有umbite K2ZrSi3O9·H2O。称为钛硅酸盐AM-2,K2TiSi3O9·H2O的Kamenevite的合成类似物,它具有很强的沸石特性。该矿物以杰出的俄罗斯地质学家Evgeniy Arsenievich Kamenev(1934–2017)的名字命名,他对Khibiny复合磷灰石矿床的地质研究和勘探做出了巨大贡献。类型标本存放在俄罗斯莫斯科俄罗斯科学院菲斯曼矿物学博物馆的收藏中。Yu.UI Campostrini,F.Demartin和M.Scavini(2019)Russoite,NH4ClAs23 + O3(H2O)0.5,一种来自意大利那不勒斯Solfatara Di Pozzuoli的新型页硅砷石矿物。矿物学杂志,83(1),89-94.I。Campostrini,F.Demartin和M.Scavini(2019)Russoite,NH4ClAs23 + O3(H2O)0.5,一种来自意大利那不勒斯Solfatara Di Pozzuoli的新型页硅砷石矿物。矿物学杂志,83(1),89-94.Russoite(IMA 2015-105),NH4ClA23 + O3(H2O)0.5,六角形,是在意大利那不勒斯Campi Flegrei地区Pozzuoli镇附近的Solfatara di Pozzuoli的火山喷气孔“ Bocca Grande”中发现的一种新矿物。喷气孔的温度约为160°C。钠铝辉石与硅铝石,双晶石,雄黄,辉石,硫磺和无定形硫化砷密切相关。在同一喷气孔中发现的其他矿物是are石、,石(Fe),异辉石,铝锌矿(Al)和godovikovite。Russoite形成玫瑰状的共生体或六角形板的近乎平行的聚集体,这些六角形板在{001}上展平,并由{100}界定,最大约300×15μm。由于混合了无定形硫化砷,有时聚集体会发黄。晶体为无色至白色,透明至半透明,具有玻璃光泽,白色条纹且没有明显的孪晶。在UV辐射中未观察到荧光。Russoite易碎,在{001}上具有完美的解理和不规则断裂。莫氏硬度尚未确定;Dmeas = 2.89(1),Dcalc = 2.911 g / cm3。矿物是光学单轴(–),ω= 1.810(6)和ε= 1.650(5)(白光)。FTIR光谱显示在(cm-1)处的谱带:3254、3145、1403(铵);3454、3398、1625(H2O); 670,604(亚砷酸盐带); 〜2400弱(大气CO2); 1110(次要OH–,部分替代氯离子)。在晶体平坦表面上进行六次电子探针EDS分析(在20 kV激发电压,10 pA束电流和2μm束直径下进行,以最大程度地减少束下的损伤和失氨)的平均值[wt%(范围)]为:K2O 1.05(0.65-1.22),As2O3 74.16(73.25-75.80),Cl 11.96(11.73-12.94),Br 0.44(0.25-0.80),[(NH4)2O 9.04和H2O 3.35 –按化学计量];总计100.00,-O = Cl,Br 2.75,总计97.25。没有检测到高于0.1重量%的其他元素的量。基于4.5个阴离子pfu和K + NH4 = 1原子pfu的经验公式为[(NH4)0.94,K0.06]Σ1.00(Cl0.91,Br0.01)Σ0.92As2.02O3(H2O)0.5。最强的X射线粉末衍射线是[dÅ(I%; hkl)]:12.63(19; 001),6.32(100; 002),4.547(75; 100),4.218(47; 003),3.094( 45; 103),2.627(46; 110),2.428(31; 112),1.820(28; 115)。从粉末XRD数据中提炼出的晶胞参数为a = 5.259(2),c = 12.590(5)Å,V = 301.55Å3。单晶XRD数据显示,红柱石为六角形,空间群为P622,a = 5.2411(7),c = 12.5948(25)Å,V = 299.6Å3,Z = 2.对于311次反射,晶体结构被细化为R = 0.0518 I>2σ(I)时,使用的是罗素合成模拟物(Edstrand和Blomqvist 1955)。精炼显示与合成相报道的铵阳离子和H 2 O基团的位置不同。至于层次砷族的其他矿物(lucabindiite,torcillasitesite和gajardoite),红土矿的晶体结构包含由As3 + O3金字塔形成的电中性As2O3薄片,这些金字塔共享O原子以形成六元环。这些薄片在拓扑上与在卢卡宾铁矿和加加多岩中发现的薄片相同。铵阳离子位于薄板之间,卤化物阴离子在薄板外部。额外的铵阳离子和H2O在两个水平的氯阴离子之间通过氢键相互作用的层中。russoite这个名字是为了纪念Massimo Russo(生于1960年),他是那不勒斯国立地理地球科学研究所的Osservatorio Vesuviano研究人员,为他对意大利火山学的贡献。整版材料存放在意大利米兰大学研究中心的DCSSI参考收藏中。DBI Campostrini,F.Demartin和M.Russo(2019)Sbacchiite,Ca2AlF7,一种来自意大利那不勒斯维苏威火山的新型富马酸矿物。欧洲矿物学杂志,31(1),153–158.I。Campostrini,F.Demartin和M.Russo(2019)Sbacchiite,Ca2AlF7,一种来自意大利那不勒斯维苏威火山的新型富马酸矿物。《欧洲矿物学杂志》,31(1),153–158。斜方晶体的方球石(Ca2AlF7)(IMA 2017-097)是在东缘的化石富马岩“共辉石坑”(自1944年爆发以来活跃)中发现的一种新矿物。意大利那不勒斯维苏威火山火山口的全景图(北纬40°49′21.98“;东经14°25′43.66”)。喷气孔的温度在1950年达到最高约800°C,然后在1960年下降到约460°C,目前下降到约7080°C。球贝石以小聚集体形式存在,与齿轮苏铁矿,陨石,钙镁矿和蛋白石紧密相关。在喷气孔中发现的其他矿物是风铁矿,亚胺矿,萤绿堇青石和副扫描钠钙石。sbacchiite的形成发生在1948年至1960年之间,或此后不久,是由于HF活性从岩石中提取铝和钙而导致的高温结壳。仅在一个约7厘米的标本中发现了该矿物,随后将其修剪成几个。球晶石晶体透明或半透明,无色,具有玻璃光泽和白色条纹。它们具有非常陡峭的双锥体习性,被[100]拉长,并被{100}皮纳科德峰截断。矿物很脆,没有明显的分裂,也没有明显的孪晶。莫氏硬度尚未确定;Dmeas = 3.08(2),Dcalc = 3.116g / cm 3。球贝石是光学双轴(+),α= 1.379(4),β= 1.384(4),γ= 1.390(4)(白光),2Vmeas = 83(2),2Vcalc = 85.1。在未抛光的平坦表面上进行的六个电子探针EDS分析(在20 kV激励电压,10 pA束电流和2μm束直径下进行,以最大程度地减少束下的损伤和失氨)的平均值[wt%(范围)]为:Ca 33.41(32.98-34.57),Mg 0.26(0.17-0.30),Al 10.97(10.78-11.14),F 54.67(54.06-55.22),总计99.31。基于10 apfu的经验公式为Ca2.02Mg0.03Al0.99F6.97。最强的X射线粉末衍射线为[dÅ(I%; hkl)]:3.840(45; 200),3.563(85; 201),3.499(100; 020),2.899(55; 013),2.750( 30; 212),2.281(20; 104),2.255(52; 302),2.173(36; 131)。从粉末数据精炼的晶胞参数为a = 7.674(1),b = 6.996(1),c = 9.553(1)Å,V = 512.9Å3.在0.05的晶体片段上获得的单晶XRD数据×0.01×0.01 mm表明辉石岩为正交晶,空间群为Pnma,a = 7.665(2),b = 6.993(1),c = 9.566(2)Å,V = 512.2Å3,Z = 4从合成的Ca2AlF7的原子位置开始(Domsele和Hoppe,1980年),对于457观察到的I>2σ(I)反射,精确到R = 0.0479。它代表了一个“分离的” [AlF6]八面体,[Ca(1)F7]扭曲的五边形双锥体和[Ca(2)F7 + 1]扭曲的多面体的框架。Ca(1)和Ca(2)多面体由沿[010]和[001]交替排列的公共边链接。沿着[100],只有Ca(1)五边形双锥体通过桥接角连接。阴离子。[AlF6]八面体的一个面与相邻的Ca(2)多面体共享,而在相反的面上,一个边和一个角与两个相邻的Ca(1)多面体共享。五个F位上的所有氟原子都是三重配位的。钠钙锰矿结构与碳酸钙钠钙石Ca2AlF7·H2O(也曾观察到“分离的” [AlF6]八面体,但在不同的环境中)和雅各松石,CaAlF5(包含[AlF6]八面体的顶点共享链,相互连接)具有一些共同的特征。由[CaF7]五角双锥体链组成,这个名字是为纪念生物学家和矿物采集者Massimo Sbacchi(生于1958年),因为他长期的野外合作和不断提供有趣的研究材料,并将整型标本存放在Dipartimento di意大利米兰大学圣基米卡分校。Cotype在意大利的Osservatorio Vesuviano博物馆(那不勒斯埃科拉诺)中。DBIV Pekov,NV Zubkova,NV Chukanov,VO Yapaskurt,SN Britvin,AV Kasatkin和DY Pushcharovky(2019)橄榄石:新的矿物学数据,晶体结构模型和精细的公式Ca5BSi4O13(OH)3⋅4H2O。《欧洲矿物学杂志》,31(3),595–608.IV佩科夫,内华达·祖科娃,内华·楚卡诺夫,VO Yapaskurt,SN布列特文,AV Kasatkin和DY Pushcharovky(2019年)橄榄石:新的矿物学数据,晶体结构模型和精细的公式Ca5BSi4O13(OH)3⋅4H2O。欧洲矿物学杂志,31(3),595–608。新的化学数据,红外光谱以及独特的,新颖的结构类型精制而成的“老”矿物橄榄石从标本位于Bazhenovskoe石棉矿床的新位置上获得,俄罗斯乌拉尔Asbest镇。对该矿物的公开数据进行了重新审查。新的理想配方为Ca5BSi4O13(OH)3⋅4H2O。矿物是三斜晶系,P1,a = 7.2557(5),b = 10.7390(11),c = 11.2399(8)Å,α= 89.432(7),β= 89.198(6),γ= 72.097(8)° ,V = 833.30Å3,Z =2。该矿物首次从美国加利福尼亚州里弗赛德县Crestmore采石场(Heller和Taylor,1956年)被报道为与雪铁矿有关的“ 10Å水合物”。认为与硅铁矿的关系是基于不完全的(未检测到B)半定量化学数据以及粉末XRD图与正交晶胞的精制参数的一些相似性:a = 11.2,b = 7.32,c = 20.5Å。后来出现(默多克1961年),来自克雷斯特莫尔的矿物质含有百分之二的B2O3。1980年,冈山县Bitchu-cho市Fuka的Fuka矿中描述了“ 10Å辉光岩”,日本(Kusachi等1980)。接下来,该矿物被IMA提交并批准为一种新的矿物橄榄石(IMA 1980-103),大概属于硅铁矿集团(Kusachi等,1981)。该说明基于Fuka矿(整体型)和Crestmore的标本。建议简化公式为Ca10Si8B2O29·nH2O(n = 9.5–12.5),斜方晶胞尺寸a = 11.25,b = 7.25,c = 20.46。1986年,日本三重县伊势市Suisho-dani报道了橄榄石,其配方调整为Ca10Si8B2O29·12H2O。接下来在南非的N'Chwaning II矿山的卡拉哈里锰矿田中发现(Von Bezing等人,1991年),该矿物产生了广为人知的矿物标本,很受矿物收集者的喜爱,但是晶体的质量不允许进行结构研究。增加了拉曼光谱和热学研究,正交或假正交的子电池的参数分别为a'= 5.578(6),b'= 3.596(4),c'= 20.46(2)Å,并且经过简化配方被修改为Ca5BSi4O14(OH)·6H2O(Biagioni et al。2012)。橄榄石是在与各种地质构造有关的后期组合中形成的热液矿物。在克雷斯特莫尔(Crestmore)和福卡(Fuka),含橄榄石的同系物与经典的钙矽卡岩有关,在Suisho-dani与埋藏在蛇纹石中的针铁矿有关,在N'Chwaning与变质的火山成沉积岩中的地层结合锰矿有关。在Bazhenovskoe矿床中,在南部露天矿的钙镁铁矿体内发现了橄榄石。它与塔氏新沸石,方沸石,硬硅钙石,孔雀石中的方解石由淡粉红色橙色肉眼状体和白色至浅灰色透辉石组成。橄榄石形成拉长的层状晶体,最大0.3×4 mm,发散并结合成扇形的聚集体或直径达8 mm的放射状玫瑰花结,其簇簇可达7×12 mm。橄榄石单晶体为无色,聚集体为珍珠白色。通过电子探针WDS分析确定的用于单晶研究的橄榄石晶体的化学组成为[wt%]:CaO 42.29,B2O3 5.38,SiO2 36.65,H2O 15.07 [结构和基于(OH)3(H2O)4 pfu ],总计99.39。经验公式为Ca4.96B1.02Si4.01O13(OH)3·4H2O。橄榄石的红外吸收光谱带为(cm-1):2200-3500(O-H拉伸)。包括2885–2905和2233–2239的条带(分别形成强氢键和强氢键的酸性OH基团);1500–1800(H–O–H弯曲);1220–1270和850–1100(分别为B–O和Si–O拉伸模式);500–800(混合的B–O–H,Si–O–H,O–Si–O和O–B–O弯曲模式);400–500(Si–O–Si拉伸)。在3969–3315和1350 cm–1处的频带分别分配给BO–H和SiO···H拉伸振动。讨论了Bazhenovskoe和N'Chwaning的橄榄石的红外光谱与雪铁矿的IR光谱之间的差异。粉末X射线衍射图中最强的线是[dÅ(I%; hkl)]:10.22(71; 010),4.921(29; 012,012),3.409(23; 121,211,121,030),3.067(24; 212) ,3.031(38; 023,212),2.917(100; 202,032,222),2.812(42,231,004)。橄榄石的晶体结构通过直接方法解决,并精炼至R1 = 12。01%。它包含两种具有不同拓扑结构的不同四面体单元,它们都是线性的并沿[100]运行。第一种(I)是硼硅酸盐链[BSi2O7(OH)2]∞,由通过单个BO2(OH)2四面体连接的二硅酸盐基团Si2O7组成。第二种类型(II)是由Si2O6(OH)二硅酸盐基团通过非常强的H键相互键合而形成的间断链(“虚线”)。四面体单元I和II连接到三种不同类型的七倍配位的Ca多面体的(010)层:CaO6(H2O),CaO3(H2O)4和CaO6OH。橄榄石的结构式为Ca5 [BSi2O7(OH)2] [Si2O6(OH)]·4H2O。该结构可视为具有硅灰石型链的硅酸盐硅酸盐与具有独立二硅酸盐基团的硅酸盐之间的“中间链接”。晶石在化学上接近于堇青石,SnMn4B2Si4O16(OH)2,在四面体BSiO链的一部分中,也存在于一些富含Ca的硅酸盐中,主要是钙铁矿超基团,结构是由以Ca为中心的多面体构建的分层图案。优优
"点击查看英文标题和摘要"
New Mineral Names,
This New Mineral Names has entries for 16 new minerals, including minerals of the volcanic fumarols: acmonidesite, elasmochloite, russoite, and sbacchiite; ammoniolasalite; minerals of Ca-Al-rich inclusions in Allende CV3 chondrite: beckettite, burnettite, and paqueite; new terrestrial phosphides: grammatikopoulosite, halamishite, murashkoite, negevite, transjordanite, tsikourasite, and zuktamrurite; kamenevite and new data on oyelite.F. Demartin, C. Castellano, and I. Campostrini (2019) Acmonidesite, a new ammonium sulfate chloride from La Fossa crater, Vulcano, Aeolian Islands, Italy. Mineralogical Magazine 83(1), 137–142.F. Demartin, C. Castellano, and I. Campostrini (2019) Acmonidesite, a new ammonium sulfate chloride from La Fossa crater, Vulcano, Aeolian Islands, Italy. Mineralogical Magazine 83(1), 137–142.Acmonidesite (IMA 2013-068), (NH4,K,Pb2+,Na)9Fe42+(SO4)5Cl8, orthorhombic, is a new mineral discovered in an active fumarole FA (T ~250 °C) at La Fossa crater, Vulcano, Aeolian Islands, Sicily, Italy. It occurs on a pyroclastic breccia with salammoniac, alunite and adranosite as brown prismatic crystals up to 0.1 mm with main forms: {100}, {120}, {011}, {010}, {102}, and no apparent twinning. The mineral has light brown streak, vitreous luster, and no cleavage. No fluorescence under UV radiation was observed. No data on hardness provided; Dmeas = 2.56(1), Dcalc = 2.551 g/cm3. In plane-polarized transmitted light acmonidesite has intense brown color (pleochroism not mentioned). It is optically biaxial (+), α = 1.580(2), β = 1.590(2), γ = 1.635(2) (white light), 2Vmeas = 53(3)° and 2Vcalc = 51.6°; X = c, Y = b, Z = a. FTIR spectrum shows strong bands related to the presence of ammonium at 3214 (broad), 2921, 2851, and 1395 cm–1; typical sulfate absorptions at 740, 1005, 1083, 1137, and 1218 cm–1. Weak bands at 1620 and 1730 cm–1 may be due to partial replacement of Cl– by OH–. The average of eight electron probe EDS analyses (performed under 20 kV excitation voltage, 10 pA beam current, and 2 μm beam diameter to minimize the damage and deammonation under the beam) on unpolished surface [wt% (range)] is: (NH4)2O (by structure) 11.05, K2O 4.91 (4.28–6.14), Na2O 2.82 (2.28–3.54), FeO 20.93 (19.51–21.88), MnO 0.42 (0.15–1.24), PbO 10.25 (7.03–12.23), SO3 29.67 (27.46–32.51), Cl 20.80 (18.42–23.46), Br 0.45 (0.36–0.51), O=Cl2 4.75, total 96.55. The empirical formula based on 28 anions pfu is (NH4)5.77K1.42Pb0.62Na1.24Fe3.962+Mn0.08S5.04O20.16Cl7.97Br0.08. The strongest reflections in the powder X-ray diffraction pattern are: [d Å (I%; hkl)] 8.766 (100; 110), 1.805 (88; 390), 5.178 (45; 131), 4.250 (42; 221), 2.926 (42; 330), 2.684 (32; 261). The unit-cell parameters refined from the powder data are a = 9.840(1), b = 19.455(2), c = 17.847(2) Å, V = 3416.6 Å 3. Single-crystal XRD data shows acmonidesite is orthorhombic, space group C2221, a = 9.841(1), b = 19.448(3), c = 17.847(3) Å, V = 3415.7 Å 3, Z = 4. The crystal structure was refined to final R = 0.0363 for 4614 observed independent I>2σ(I) reflections. The structure contains two different distorted octahedral sites, Fe1 (coordinated by 2 Cl atoms and 4 O atoms of the SO42– groups) and Fe2 (coordinated by 3 Cl atoms and 3 O atoms of the SO42– groups). Chains of four Fe2+ distorted octahedra sharing Cl vertexes with other vertexes bridged by three independent SO42– tetrahedra make finite clusters, interacting each other only through the sulfate anions forming a three-dimensional framework with the voids occupied by 4 independent NH4+ ions (2 of them partially replaced by K+), one Na+/Pb2+ site and one Cl– ion. The name is from Acmonides (from the Greek Ακμωνιδης), one of Ovidius’ Cyclops, helpers of Hephaistos, the mythological god of fire whose forge was alleged to be located at Vulcano. Holotype material is deposited in the Reference Collection of the Dipartimento di Chimica, Università degli Studi di Milano, Italy. D.B.A.R. Kampf, B.P. Nash, P.M. Adams, J. Marthy, and J.M. Hughes (2018) Ammoniolasalite, [(NH4)2Mg2(H2O)20][V10O28], a new decavanadate species from the Burro Mine, Slick Rock District, Colorado. Canadian Mineralogist, 56(6), 859–869.A.R. Kampf, B.P. Nash, P.M. Adams, J. Marthy, and J.M. Hughes (2018) Ammoniolasalite, [(NH4)2Mg2(H2O)20][V10O28], a new decavanadate species from the Burro Mine, Slick Rock District, Colorado. Canadian Mineralogist, 56(6), 859–869.Ammoniolasalite (IMA 2017-094), ideally [(NH4)2Mg2(H2O)20] [V10O28], monoclinic, is a new decavanadate species discovered in the underground Burro mine, Slick Rock district, San Miguel County, Colorado, U.S.A. (38°2′42″N 108°53′23″W). The mine belongs to a 120 km long arcuate ‘‘Uravan Mineral Belt’’ of bedded or roll-front deposits in sandstone of the Salt Wash member of the Jurassic Morrison Formation. The U and V primary ore mineralization was deposited in strongly reducing environment around accumulations of carbonaceous plant material. Ammoniolasalite along with other decavanadates [V10O28]6–, protonated decavanadates, [HxV10O28](6x), mixed-valence decavanadates [(Vx4+V10x5+)O28](6+x) and uranium minerals resulted from the postmining oxidation of primary montroseite-corvusite assemblages at ambient temperatures. The ammonium derives from organic matter. The mineral forms crusts generally up to 2 mm thick on montroseite- and corvusite-rich sandstone with ammoniozippeite, and NH4-bearing decavanadates schindlerite and wernerbaurite. Bright orange to orange yellow ammoniolasalite crystals in the crusts exhibit parallel orientation. They are short prismatic by [101] to equant, often with stepped or skeletal faces. The crystal forms are {001}, {110}, {101}, {111}, {111}, {201}, {311}. The mineral has a light orange streak and a vitreous luster. It mineral does not exhibit any fluorescence in UV radiation. Ammoniolasalite is brittle with conchoidal fracture and no cleavage. Mohs hardness is ~1; Dmeas = 2.28(2) and Dcalc = 2.278 g/cm3 (2.271 for an ideal formula). At room temperature it is slowly soluble in water (minutes) and rapidly soluble in dilute HCl (seconds). Ammoniolasalite is pleochroic X (yellow) < Y (yellow orange) < Z (orange). It is optically biaxial (–), α = 1.740(3), β = 1.769(3), γ = 1.771(3) (white light), 2V = 31(1)°; Y = b, Z^a = 38° in β obtuse. Dispersion of an optical axes is very strong, r > ν. FTIR spectrum is similar to that of lasalite with a broad strong multicomponent feature at ~ 3700–300 cm–1 (O–H and N–H stretching), and strong peaks around 1700 cm–1 (H–O–H bending), around 1450 cm–1 (NH4 deformation) and around 1000 cm–1 (VO stretching). The average of four points electron probe WDS analyses on three crystals [wt% (range)] is K2O 0.95 (0.53–1.16), MgO 6.53 (6.36–6.79), V2O5 76.02 (75.12–76.84), (NH4)2O 1.64 (1.34–1.75). Ammoniolasalite is very sensitive to dehydration and deammoniation in air and particularly during separating the crystals from matrix and under vacuum. The data obtained by CHN analysis shows (NH4)2O 2.65, H2O 19.76 wt%. The calculations based on structural study (considering the full occupancy of the NH4/K site; V = 10 and O = 48 apfu) gave (NH4)2O 3.26, and H2O 25.70 wt%. The empirical formula based on 48 O, 10 V apfu, calculated values for (NH4)2O and H2O, and other elements normalized to provide a total of 100% (i.e. K2O 0.81, MgO 5.56, V2O5 64.68) is [(NH4)1.76K0.24]∑2.00Mg1.94[V105+O28]·20H2O. The strongest lines in the diffraction pattern are [d Å (I%; hkl)]: 10.64 (24; 200), 8.57 (21; 202), 9.43(100; 110,111), 7.62 (26; 002,111), 6.80 (32; 112,311), 2.725 (23; 040,621). Unit-cell parameters refined from the powder data with whole pattern fitting are a = 24.471(9), b = 10.935(9), c = 17.456(9) Å, β = 119.051(14)°, and V = 4083 Å3. The single-crystal XRD data shows ammoniolasalite is monoclinic, space group C2/c, a = 24.478(3), b = 10.9413(4), c = 17.5508(12) Å, β = 119.257(7)°, V = 4100.9 Å3, Z =4. The structure was solved by direct methods and refined to R1 = 0.0357 for 3628 I >2σ(I) independent reflections. Ammoniolasalite is isostructural with lasalite, [Na2Mg2(H2O)20][V10O28]. Its atomic arrangement consists of structural unit [V10O28]6– decavanadate group and interstitial complex [(NH4,K)2Mg2(H2O)20]6+. The Mg atoms bond to interstitial-unit H2O groups and do not share any bonds with the decavanadate group or other polyhedra of the interstitial unit. The (NH4,K) site links to four H2O groups and three oxygen atoms of the decavanadate structural group. The occupancy of that site refined from the structure is [(NH4)1.30K0.70]∑2.00. The difference is assigned to a real variation in the relative amounts of NH4 and K. The name reflects the chemical composition as NH4-dominant (over Na) analogue of lasalite. Five cotype specimens are deposited in the Natural History Museum of Los Angeles County, Los Angeles, California, U.S.A. D.B.C. Ma, J. Paque, and O. Tschauner (2016) Discovery of beckettite, Ca2V6Al6O20, a new alteration mineral in a V-rich Ca-Al-rich inclusion from Allende. 47th Lunar and Planetary Science Conference, session T335, 1704.C. Ma and J.R. Beckett (2016) Burnettite, CaVAlSiO6, and paqueite, Ca3TiSi2(Al2Ti)O14, two new minerals from Allende: clues to the evolution of a V-rich Ca-Al-rich inclusion. 47th Lunar and Planetary Science Conference, session T335, 1595.C. Ma, J. Paque, and O. Tschauner (2016) Discovery of beckettite, Ca2V6Al6O20, a new alteration mineral in a V-rich Ca-Al-rich inclusion from Allende. 47th Lunar and Planetary Science Conference, session T335, 1704.C. Ma and J.R. Beckett (2016) Burnettite, CaVAlSiO6, and paqueite, Ca3TiSi2(Al2Ti)O14, two new minerals from Allende: clues to the evolution of a V-rich Ca-Al-rich inclusion. 47th Lunar and Planetary Science Conference, session T335, 1595.Three new minerals: beckettite (IMA 2015-001), ideally Ca2V6Al6O20, triclinic, a member of aenigmatite group of the sapphirine supergroup; burnettite (IMA 2013-054), ideally CaVAlSiO6, monoclinic, a member of pyroxene group; paqueite (IMA 2013-053), Ca3TiSi2(Al2,Ti)3O14, trigonal, were discovered in a V-rich, fluffy Type A Ca-Al-rich inclusion (CAI) A-WP1 (0.6 × 1 mm) in Allende carbonaceous chondrite CV3. Phases of similar compositions were previously mentioned (Paque 1985, 1989) during the study of on the specimen USNM 7617 of the National Museum of Natural History, Smithsonian Institution, Washington, D.C., U.S.A. After completing the chemical and structural (EBSD) studies this specimen is considered as a holotype for all three new mineral species). Ti-rich phase similar to paqueite was characterized in CAIs from the CM2 Essebi chondrite (El Goresy et al. 1984). Burnettite and paqueite form micrometer-sized euhedral crystals within aluminous melilite (Ak9 and Ak11, respectively) in A-WP1. Other primary phases in the CAI are spinel, perovskite, grossmanite-davisite, hibonite, and refractory metal grains. Beckettite occurs within highly altered areas of A-WP1 and forms aggregates of grains 48 μm in the central portions of alteration regions composed of fine-grained secondary corundum and grossular with anorthite, coulsonite, hercynite. Burnettite is supposed to be formed in reducing conditions from an ultra-refractory parent. Paqueite could be produced during late-stage dynamic crystallization or could be resulted of exsolution. Beckettite, probably formed in the parent body by the late-stage metasomatic reactions in which grossular, corundum, coulsonite, and hercynite, replace primary phases such as melilite, hibonite, spinel, perovskite, and burnettite. The mineral along with coulsonite might be a product of the destruction of what was a V-rich inclusion in melilite in that same spot. Alternatively, it could be resulted along with corundum from the breakdown of the primary hibonite in a hot V-rich fluid. Physical properties of new minerals were not determined due to a small size. The averages of five electron probe (mode is not specified) analyses for each of species [wt%, (standard deviation)] are: for beckettite, Na2O 0.04 (0.01), CaO 13.58 (0.15), MgO 1.22 (0.03), FeO 0.35 (0.14), MnO 0.05 (0.06), Al2O3 44.14 (0.29), Sc2O3 0.7 (0.03), V2O3 31.6 (0.1), SiO2 2.02 (0.03), TiO2 5.54 (0.07), total 99.24, with corresponding empirical formula (Ca1.99Na0.01)∑1.00 (V3.473+Al1.40Ti0.574+Mg0.25Sc0.08Fe0.042+Mn0.01)∑5.82(Al5.72Si0.28)∑6.00O20 based on 20 O pfu; for burnettite / paqueite (deviations or ranges not given): Na2O – / 0.62, CaO 24.83 / 29.58, MgO 1.51 / 0.18, Al2O3 23.36 / 15.21, V2O3 9.35 / 1.56, Sc2O3 6.89 / 0.84, SiO2 25.69 / 24.43, TiO2 8.49 / 27.51, total 100.12 / 99.93 with empirical formulae Ca1.04[(V0.293+Sc0.24Ti0.133+ Al0.09)Ti0.134+Mg0.08]∑0.96(Si1.01Al0.99)∑2.00O6 based on 4 cations (with Ti4+ = Ti3+) apfu / (Ca2.91Na0.11)∑3.02Ti4+Si2(Al1.64Ti0.904+Si0.24V0.123+Sc0.07Mg0.03)∑3.00O14 based on 14 O pfu. The EBSD patterns of beckettite indexed with best fits obtained using the structure of rhönite. Beckettite is triclinic, space Group: P1, a = 10.367, b = 10.756, c = 8.895 Å, α = 106.0°, β = 96.0°, γ = 124.7°, V = 739.7 Å3, Z = 2. The main lines of the calculated powder XRD pattern [(d Å (I%; hkl)] are: 2.684 (60; 241), 2.683 (68; 203), 2.544 (100; 420), 2.541 (81; 242), 2.540 (75; 213), 2.104 (84; 251), 2.103 (84; 204), 2.089 (89; 411) (Ma et al. 2015). Burnettite EBSD patterns can only be indexed by a C2/c pyroxene structure. It is monoclinic, space group C2/c, a = 9.80, b = 8.85, c = 5.36 Å, β = 105.62°, Z = 4. The main lines of the calculated powder XRD pattern [(d Å (I%; hkl)] are: 2.996 (100; 221), 2.964 (33; 310), 2.909 (20), 2.581 (41; 002), 2.560 (29; 131), 2.535 (47; 221), 2.131 (19; 331), 1.650 (17; 223) (Ma 2013). For paqueite the EBSD patterns were indexed and gave best fits using the P321 structure of synthetic high-pressure phase Ca3TiSi2(Al,Ti,Si)3O14. Paqueite is trigonal, space group P321, a = 7.943, c = 4.930 Å, Z = 1. The main lines of the calculated powder XRD pattern [(d Å (I%; hkl)] are: 6.879 (20; 010), 3.093 (100; 111), 2.821 (68; 021), 2.600 (21; 120), 2.300 (43; 121), 1.908 (17; 130), 1.789 (28; 122) (Ma 2013). The names of the new minerals honors John R. Beckett, Donald S. Burnett, and Julie M. Paque, cosmochemists at the California Institute of Technology. D.B.I.V. Pekov, S.N. Britvin, A.A. Agakhanov, M.F. Vigasina, and E.G. Sidorov (2019) Elasmochloite, Na3Cu6BiO4(SO4)5, a new fumarolic mineral from the Tolbachik volcano, Kamchatka, Russia. European Journal of Mineralogy, 31(5-6), 1025–1032.I.V. Pekov, S.N. Britvin, A.A. Agakhanov, M.F. Vigasina, and E.G. Sidorov (2019) Elasmochloite, Na3Cu6BiO4(SO4)5, a new fumarolic mineral from the Tolbachik volcano, Kamchatka, Russia. European Journal of Mineralogy, 31(5-6), 1025–1032.Elasmochloite (IMA 2018-015), ideally Na3Cu6BiO4(SO4)5, mono-clinic, was discovered in a single specimen collected in July 2013 at a depth of ~1 m in the central part of Arsenatnaya fumarole, the Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Kamchatka. It is a new representative of a hydrogen-free alkali-copper oxysulfates family deposited directly from hot gas at temperatures not lower that 350–400 °C. The new mineral is associating with tenorite, hematite, langbeinite, aphthitalite, krasheninnikovite, and johillerite. Elasmochloite forms lamellar quadratic or rectangular with cut vertices crystals up to 0.005 × 0.07 × 0.1 mm flattened on [001], either separate or combined into open-work clusters up to 0.3 mm or interrupted crusts up to 1 × 1 mm on a surface of basalt scoria altered by fumarolic gas. Elasmochloite is green, transparent with a strong vitreous luster and a pale greenish streak. It is brittle with uneven fracture and no cleavage or parting observed. The Mohs hardness and density were not measured due to small crystal size and the open-work nature of aggregates; Dcalc = 3.844 g/cm3. Elasmochloite is strongly pleochroic O (grass-green) > E (turquoise-blue), optically pseudo-uniaxial (–), α = 1.611(2), β = γ = 1.698(2), 2V ≈ 0° (589 nm). The bands in the Raman spectrum (cm–1; s – strong) are: 1283s, 1208, 1098 [F2(ν4) bending of SO42−]; 1039, 1010s, 996s [A1(ν1) symmetric stretching of SO42−], 668, 627, 584 [F2(ν4) bending of SO42−], 503, 445 [E(ν2) bending of SO42−], 268, 190s, and 124 (lattice modes). The features at 550–250 cm–1 can also be assigned to Bi3+–O and Cu2+–O stretching vibrations. The absence of bands with frequencies higher than 1300 cm–1 indicates the absence of groups with O–H, C–H, C–O, N–H, and N–O bonds. The averaged 7 point WDS electron probe analyses is [wt%, (range)]: Na2O 6.67 (6.50–6.87), K2O 0.82 (0.70–0.90), CuO 38.77 (38.37–39.34), ZnO 0.25 (0.00–1.06), PbO 3.17 (2.75–3.64), Bi2O3 17.66 (17.17–18.84), SO3 32.81 (32.42–33.04), total 100.15. The empirical formula based on 24 O atoms pfu is Na2.63K0.21Cu5.96Zn0.04Bi0.93 S5.01O24. The strongest lines of the powder X-ray diffraction pattern are [d Å (I%; hkl)]: 10.33 (100; 002), 7.04 (18; 110,111), 6.33 (14; 111,112), 3.576 (24; 221), 2.920 (14; 225), 2.529 (14; 402,040), 2.460 (14; 227). The single-crystal XRD data shows elasmochloite is monoclinic (pseudo-tetragonal), P21/n, a = 10.1273(9), b = 10.1193(8), c = 21.1120(16) Å, β = 102.272(8)°, V = 2114.1 Å3, Z = 4. The crystal structure solved by dual space method and refined to R1 = 20.6% is considered only as a model. Despite high R1 value, the reliable values of thermal displacement parameters and interatomic distances, good values of bond-valence sums, good agreement between measured and calculated powder XRD patterns, zero charge balance in the structural formula and its agreement with electron microprobe data, confirm that the crystal structure model is correct. It is a novel structure, and contains two types of alternating polyhedral layers: (1) “copper-bismuth slabs” composed by [BiO4O2] polyhedra, [CuO5] square pyramids and [CuO4] squares and (2) “sodium slabs” consisting of [NaO5] and [NaO6] polyhedra. All cationic polyhedral and linked by corner-sharing [SO4] tetrahedra. Elasmochloite has some common structural features with nabokoite KCu7Te4+O4(SO4)5Cl and favreauite PbCu6BiO4(Se4+O3)4(OH)·H2O. The name is based on the Greek words ελασµα, meaning lamella, and χλοη, meaning the green shoot or green grass, thus alluding to elasmochloite’s green color and lamellar crystal habit. The type specimen is deposited in the Fersman Mineralogical Museum of the Russian Academy of Sciences, Moscow, Russia. Yu.U.L. Bindi, F. Zaccarini, E. Ifandi, B. Tsikouras, C. Stanley, G. Garuti, and D. Mauro (2020) Grammatikopoulosite, NiVP, a new phosphide from the chromitite of the Othrys ophiolite, Greece. Minerals, 10(2), 131.F. Zaccarini, L. Bindi, E. Ifandi, T. Grammatikopoulos, C. Stanley, G. Garuti, and D. Mauro (2019) Tsikourasite, Mo3Ni2P1+x (x < 0.25), a new phosphide from the chromitite of the Othrys ophiolite, Greece. Minerals, 9(4), 248.L. Bindi, F. Zaccarini, E. Ifandi, B. Tsikouras, C. Stanley, G. Garuti, and D. Mauro (2020) Grammatikopoulosite, NiVP, a new phosphide from the chromitite of the Othrys ophiolite, Greece. Minerals, 10(2), 131.F. Zaccarini, L. Bindi, E. Ifandi, T. Grammatikopoulos, C. Stanley, G. Garuti, and D. Mauro (2019) Tsikourasite, Mo3Ni2P1+x (x < 0.25), a new phosphide from the chromitite of the Othrys ophiolite, Greece. Minerals, 9(4), 248.Two new phosphides: grammatikopoulosite (IMA 2019-090), NiVP, orthorhombic, and tsikourasite (IMA 2018-156), Mo3Ni2P1+x (x < 0.25), cubic, were discovered in a heavy mineral concentrate separated from podiform chromitite hosted in strongly serpentinized dunite from a mantle tectonite composed of harzburgite and minor intercalations of plagioclase-bearing lherzolite. The main chromitite constituent is magnesiochromite. The interstitial assemblage is pervasively replaced by chlorite and hydrogrossular and minor talc and serpentine. Locally, hydrogarnet fills veins up to 50 µm thick crosscutting magnesiochromite. These veins are presumably associated with the rodingitized gabbro cross-cutting chromitites. Rare titanite, kammererite, pentlandite, and millerite also occur in the hydrogarnet veins. The genetic models of phosphide precipitation are discussed. The concentrate obtained by processing (crushing, treating with heavy liquid, panning, etc.) of ~10 kg of massive chromitite collected in the abandoned mine of Agios Stefanos ~10 km south of Domokos village, Mesozoic Othrys ophiolite complex, central Greece. The heavy minerals were prepared in epoxy blocks. No source of contamination is likely during sampling and subsequent treatments. In the polished sections grammatikopoulosite and tsikourasite occur as generally isolated grains less than 10 µm rarely up to ~80 µm. In poly-phase grains they associated with each other and nickelphosphide, awaruite and potential new minerals (under study) such as Ni-allabogdanite or Ni-barringerite and V-sulfide. Other minerals in polished sections include PGM:Ru-Os-Ir-Ni alloys, laurite, erlichmanite, Pd-Sb-Cu alloys, Pd-Cu-Pt alloys, irarsite, platarsite, hollingworthite, merenskyite, and cooperite-braggite. Both new minerals have metallic luster, are opaque and brittle. Density and hardness were not measured due to small size. Other properties and characteristics are as follows:Grammatikopoulosite in reflected light is creamy-yellow, weakly bireflectant, with measurable but not discernible pleochroism and slight anisotropy with indeterminate rotation tints. Internal reflections were not observed. Reflectance values in air (R1/R2% λ nm) are (COM wavelengths are bolded): 47.6/48.8 400, 47.9/49.1 420, 48.3/49.4 440, 48.6/49.9 460, 48.8/50.3 470, 49.0/50.7 480, 49.4/51.5 500, 49.9/52.4 520, 50.3/53.3 540, 50.5/53.5 546, 50.9/54.1 560, 51.4/54.9 580, 51.7/55.2 589, 51.9/55.5 600, 52.4/56.2 620, 53.0/56.8 640, 53.2/57.1 650, 53.8/58.0 680, 54.2/58.6 700. The average of five spot electron probe WDS analyses [wt% (range)] is: Ni 21.81 (21.69–21.98), Co 16.46 (16.33–16.66), Fe 3.83 (3.78–3.86), V 20.85 (20.48–21.05), Mo 16.39 (16.20–16.72), Si 0.14 (0.13–0.16), P 19.90 (19.65–20.38), S 0.41 (0.39–0.42), total 99.79. The empirical formula based on ΣMetals = 2 apfu, and considering structural results is M1(Ni0.57Co0.32Fe0.11)Σ1.00M2(V0.63Mo0.26Co0.11)Σ1.00(P0.98S0.02)Σ1.00. The strongest X-ray powder diffraction lines are [d Å (I%; hkl)]: 4.43 (10; 101), 2.950 (20; 102), 2.785 (25; 111), 2.273 (60; 112), 2.157 (100; 211), 2.118 (25; 103), 1.784 (20; 020). The unit-cell parameters refined from the powder data are a = 5.8088(2), b = 3.5993(2), c = 6.8221(3) Å, V = 142.63 Å3. The single-crystal XRD data shows grammatikopoulosite is orthorhombic, space group Pnma, a = 5.8893(8), b = 3.5723(4), c = 6.8146(9) Å, V = 143.37 Å 3, Z = 4; Dcalc = 7.085 g/cm3. The structure was refined (starting from the atomic coordinates of allabogdanite FeNiP) to R1 = 0.0276 for 465 Fo>4σ(Fo) reflections. Grammatikopoulosite belongs to the group of natural phosphides (florenskyite FeTiP, allabogdanite (Fe,Ni)2P, and andreyivanovite FeCrP) with the Co2Si structure. In the structure M1 links four P atoms and eight M2, whereas M2 links five P, six M1, and two M2. The M–P distances are much shorter in the M1 coordination sphere than in that of M2. If only the M–P distances are considered in the coordination polyhedra of the M atoms, M1P4 tetrahedra forming corner-sharing chains along the b-axis or M2P5 square pyramids forming zigzag chains along the a-axis can be observed. The mineral name honors Tassos Grammatikopoulos (b. 1966), geoscientist at the SGS Canada Inc., for his contribution to the economic mineralogy and mineral deposits of Greece. Holotype material is deposited in the Museo di Storia Naturale, Università di Pisa, Italy.Tsikourasite in reflected light is white yellow with no bireflectance, anisotropism or pleochroism. Internal reflections were not observed, Reflectance values in air (R% λ nm) are (COM wavelengths are bolded): 54.6 400, 54.9 420, 55.2 440, 55.5 460, 55.7 470, 55.8 480, 56.1 500, 56.4 520, 56.7 540, 56.8 546, 57.0 560, 57.3 580, 57.5 589, 57.6 600, 58.0 620, 58,3 640, 58.5 650, 58.6 660, 58.9 680, 59.2 700. The average of five spot electron probe WDS analyses [wt% (range)] is: Ni 23.9 (23.77–24.16), Co 7.59 (7.53–7.72), Fe 1.18 (1.14–1.20), V 14.13 (13.98–14.19), Mo 44.16 (43.56–44.65), P 7.97 (7.59–8.20), S 0.67 (0.64–0.71), total 99.60. The empirical formula based on ∑Metals = 5 apfu and considering the structural data is (Mo1.78V1.07Fe0.08Co0.07)∑3.00(Ni1.57Co0.43)∑2.00(P0.98S0.08)∑1.06. The powder XRD data was not obtained. The strongest lines of the calculated X-ray powder diffraction pattern are [dcalc Å (Icalc%; hkl)]: 2.705 (13; 400), 2.483 (12; 331), 2.209 (42; 422), 2.083 (65; 422), 2.083 (35; 511), 1.913 (21; 440), 1.275 (14; 660), 1.275 (17; 822). The single-crystal study shows tsikourasite is cubic, space group F43m, a = 10.8215(5) Å, Z = 16; Dcalc = 9.182 g/cm3. The crystal structure was refined (starting from the atom coordinates of the Mo3Ni2P1.16 compound synthesized at 1350 °C) to R1 = 0.0188 for 216 I>2σ(I) reflections. The tsikourasite structure shows numerous metal–metal bonds (Ni–Ni, Mo–Ni, and Mo–Mo) in contrast to Mo–P and Ni–P bonds. The metal atoms are connected to only two or three P atoms, whereas 12 or 6 metal atoms surround the P1 and P2 sites, respectively. In the structure Mo atoms are arranged as [PMo6]-octahedra in a diamond-like network. Half of the octahedra, which are built by Mo2 atoms, are empty, while the second half formed by Mo1 atoms are occupied by P2, which shows partial occupancy (20%). These occupied octahedra are displayed in an fcc array. Unlike tsikourasite, similar in composition, monipite MoNiP, polekhovskyite MoNiP2, and synthetic MoNiP2 are hexagonal. Tsikourasite could represent the Mo equivalent of the grains of composition (Ni,Fe)5P recently found in chromitites of the Alapaevsk (Russia) and Gerakini-Ormylia (Greece) ophiolites (Sideridis et al. 2018). The mineral honors Basilios Tsikouras (b. 1965) of the Universiti Brunei Darussalam for his contributions to the ore mineralogy and mineral deposits related to ophiolites. The type material is deposited in the Museo di Storia Naturale, Università di Firenze, Italy. D.B.S.N. Britvin, M. Murashko, Y. Vapnik, Y.S. Polekhovsky, S.V. Krivovichev, O.S. Vereshchagin, V.V. Shilovskikh, N.S. Vlasenko, and M.G. Krzhizhanovskaya (2020) Halamishite, Ni5P4, a new terrestrial phosphide in the Ni–P system. Physics and Chemistry of Minerals, 47, 3.S.N. Britvin, Y. Vapnik, Y.S. Polekhovsky, S.V. Krivovichev, M.G. Krzhizhanovskaya, L.A. Gorelova, O.S. Vereshchagin, V.V. Shilovskikh, and A.N. Zaitsev (2019) Murashkoite, FeP, a new terrestrial phosphide from pyrometamorphic rocks of the Hatrurim Formation, South Levant. Mineralogy and Petrology, 113(2), 237–248.S.N. Britvin, M.N. Murashko, Ye. Vapnik, Y.S. Polekhovsky, S.V Krivovichev, O.S. Vereshchagin, V.V. Shilovskikh, and M.O. Krzhizhanovskaya (2020) Negevite, the pyrite-type NiP2, a new terrestrial phosphide. American Mineralogist, 105(3), 422–427.S.N. Britvin, M.N. Murashko, Ye. Vapnik, Y.S. Polekhovsky, S.V. Krivovichev, M.O. Krzhizhanovskaya, O.S. Vereshchagin, V.V. Shilovskikh, and N.S. Vlasenko (2020) Transjordanite, Ni2P, a new terrestrial and meteoritic phosphide, and natural solid solutions barringerite-transjordanite (hexagonal Fe2P–Ni2P). American Mineralogist, 105(3), 428–436.S.N. Britvin, M. Murashko, Y. Vapnik, Y.S. Polekhovsky, S.V. Krivovichev, O.S. Vereshchagin, N.S. Vlasenko, V.V. Shilovskikh, and A.N. Zaitsev (2019) Zuktamrurite, FeP2, a new mineral, the phosphide analogue of löllingite, FeAs2. Physics and Chemistry of Minerals, 46, 361–369.S.N. Britvin, M. Murashko, Y. Vapnik, Y.S. Polekhovsky, S.V. Krivovichev, O.S. Vereshchagin, V.V. Shilovskikh, N.S. Vlasenko, and M.G. Krzhizhanovskaya (2020) Halamishite, Ni5P4, a new terrestrial phosphide in the Ni–P system. Physics and Chemistry of Minerals, 47, 3.S.N. Britvin, Y. Vapnik, Y.S. Polekhovsky, S.V. Krivovichev, M.G. Krzhizhanovskaya, L.A. Gorelova, O.S. Vereshchagin, V.V. Shilovskikh, and A.N. Zaitsev (2019) Murashkoite, FeP, a new terrestrial phosphide from pyrometamorphic rocks of the Hatrurim Formation, South Levant. Mineralogy and Petrology, 113(2), 237–248.S.N. Britvin, M.N. Murashko, Ye. Vapnik, Y.S. Polekhovsky, S.V Krivovichev, O.S. Vereshchagin, V.V. Shilovskikh, and M.O. Krzhizhanovskaya (2020) Negevite, the pyrite-type NiP2, a new terrestrial phosphide. American Mineralogist, 105(3), 422–427.S.N. Britvin, M.N. Murashko, Ye. Vapnik, Y.S. Polekhovsky, S.V. Krivovichev, M.O. Krzhizhanovskaya, O.S. Vereshchagin, V.V. Shilovskikh, and N.S. Vlasenko (2020) Transjordanite, Ni2P, a new terrestrial and meteoritic phosphide, and natural solid solutions barringerite-transjordanite (hexagonal Fe2P–Ni2P). American Mineralogist, 105(3), 428–436.S.N. Britvin, M. Murashko, Y. Vapnik, Y.S. Polekhovsky, S.V. Krivovichev, O.S. Vereshchagin, N.S. Vlasenko, V.V. Shilovskikh, and A.N. Zaitsev (2019) Zuktamrurite, FeP2, a new mineral, the phosphide analogue of löllingite, FeAs2. Physics and Chemistry of Minerals, 46, 361–369.Five new natural, terrestrial phosphides: halamishite (IMA 2013-105), Ni5P4, hexagonal; murashkoite (IMA 2012-071), FeP, orthorhombic; negevite (IMA 2013-104) NiP2, cubic; transjordanite (IMA 2013-106), Ni2P, hexagonal; and zuktamrurite (IMA 2013-107), orthorhombic were discovered in pyrometamorphic assemblages of the Hatrurim Formation (“Mottled Zone”). This is the world’s largest, geologically juvenile suite of pyrometamorphic rocks exposed across 150 × 200 km territory in the surroundings of the Dead Sea, in Israel, Palestinian Authority, and Jordan. The chalky-marly sediments of the Hatrurim formation underwent extensive and repetitive high-temperature (500–1350 °C) and low-pressure (~1 bar) metamorphism ~2.3–4 Ma. Two most popular hypothesis are explaining high temperature and (in a number of cases) strongly reducing environment as a result of burning bituminous rich sedimentary units or a result of a firing of hydrocarbons (mostly methane) from mud volcano explosions initiated by tectonic activity at the Dead Sea transform fault. Phosphides were usually considered as having meteoritic origin. Finding a bunch of new terrestrial phosphides along with previously found in the rocks of Hatrurim formation schreibersite, Fe3P, and barringerite, Fe2P, shows a wide variability of the M/P ratios making it substantially distinct from meteoritic minerals. Phosphide associations of the “Mottled Zone” are Earth’s richest example of the parageneses bearing siderophile rather than lithophile phosphorus. Two phosphide-bearing locations were found on both sides of the Dead Sea (Levantine) Transform Fault at Nahal Halamish (Halamish wadi), southern part of the Hatrurim Basin, Negev Desert, Israel (31° 09′ 47″ N; 35° 17′ 57″ E) and in phosphorite quarry at the Daba-Siwaqa complex, Transjordan Plateau, Al-Rasas Sub-District, 80 km SSE of Amman, Jordan (31°21′ 52″; N, 36° 10′ 55″ E). The distance between location ~100 km. At the Halamish wadi phosphides are disseminated in fine-grained in hydrothermally altered micro-breccia consisting on colorless almost pure diopside (~50–60 vol%). Other associated minerals are merrillite, Cu-trevorite, hematite, magnetite, pyrrhotite, troilite, hydrous X-ray amorphous silicates and hydroxides of Ca, Mg, Fe, Ni, Ca-carbonates and sulfates. The interstices are filled with secondary calcite, fluorapatite, smectites and unidentified hydrous Ca–Fe–Ni–Mg phosphates. Halamishite (grains up to 20 μm) and negevite (grains up to 15 μm) are closely associated with zuktamrurite (grains ~10 μm, rarely up to 50 μm, sometimes hosting lamellae of molybdenite), transjordanite (irregular grains up to 0.2 mm), murashkoite (grains 10–200 μm, rarely up to 2 mm often intergrown with barringerite), and unnamed nickel phosphide–sulfide. Murashkoite also forms dendritic aggregates in the matrix of hydrous silicates. In Daba-Siwaqa complex same phosphide association (besides halamishite) found disseminated in centimeter-sized veins of medium-grained clinopyroxene (diopside-hedenbergite)-anorthite paralavas of gabbro-dolerite compositions cross-cutting heterogeneous calcined marble conglomerates. Subordinate minerals of paralavas are gehlenite, tridymite, cristobalite with accessory magnetite, troilite, pyrrhotite, hematite, merrillite, and fluorapatite. This primary association partially substituted by a late, low-temperature carbonates, silicates, and sulfates. Transjordanite was also found in iron ungrouped meteorite Cambria found in 1818 nearby Lockport, Niagara County, New York, U.S.A., where recrystallized microgranular (10–20 μm) troilite stuffed with fragments of finely brecciated schreibersite frequently encrusted with 5–10 μm thick, onion-like rims composed of sub-microcrystalline transjordanite-barringerite aggregate with the grain size less than 0.5 μm.Halamishite is dark gray, transjordanite is grayish-white or gray and murashkoite is yellowish-gray. In reflected light they are white with a beige tint. Macroscopical colors are not given for zuktamrurite and negevite due to its small size but in reflected light both are white with bluish tint more distinctive for transjordanite. All five new phosphides have metallic luster, are non-pleochroic, brittle (its grains are usually fractured) with no evidence of cleavage. The density values were not measured. Micro-indentation hardness data were obtained for murashkoite (VHN20 = 468 kg/mm2, corresponding to ~5 of Mohs scale) and for transjordanite (658 kg/mm2). Other characteristics are as follows:Halamishite, is moderately anisotropic and bireflectant (ΔR589 = 7.2%). The reflectance values [Rmax/Rmin% λ nm] COM wavelengths are bolded: 40.3/34.5 400; 41.5/35.2 420; 42.5/36.3 440; 43.7/37.3 460; 44.3/36.6 470; 44.8/35.8 480; 46.2/39.6 500; 47.7/40.7 520; 48.9/41.9 540; 49.2/42.1 546; 50.0/42.7 560; 50.9/43.7 580; 51.3/44.1 589; 51.7/44.5 600; 52.4/45.3 620; 53.0/45.8 640; 53.3/46.1, 650; 53.6/46.5 660; 54.2/46.9 680; 55.0/47.5 700. The average of three electron probe EDS analyses of the holotype (wt%): Ni 69.23, Fe 1.80, P 29.59, total 100.62 (ranges or deviations are not given). The empirical formula based on 9 atoms pfu is (Ni4.90Fe0.13)5.03P3.97. Dcalc = 6.249 g/cm3. Powder XRD data was not obtained. The strongest lines in the calculated XRD powder pattern [dcalc Å (Icalc%; hkl)] are: 3.121 (45; 103), 2.953 (56; 200), 2.498 (57; 104), 2.069 (57; 212), 2.015 (88; 204), 1.938 (69; 301), 1.908 (77; 213), 1.735 (100; 214), 1.705 (58; 220). The single-crystal XRD data obtained on a grain of 0.01 × 0.01 × 0.01 mm shows halamishite is hexagonal, space group P63mc, a = 6.8184(4), c = 11.0288(8) Å, V = 444.04 Å 3, Z = 4. The crystal structure was solved and refined to R1 = 0.031 based on 425 unique observed [I≥2σ(I)] reflections. It contains eight unique Ni and P sites. A distinguished feature of halamishite structure is a short P–P bond (2.196 Å) “P–P dumbbell” similar to S–S dumbbells in sulfide structures. The synthetic Ni5P4, analogue of halamishite is widely used in electro- and photocatalytic applications. Due to chemical proximity to the Ni5P4, end-member, halamishite can be used as a geothermometer indicating that formation of phosphide assemblages had occurred at a temperature below 870 °C. The mineral was named for its type locality, the Halamish wadi. The holotype is deposited at the Mineralogical Museum of the Department of Mineralogy, St. Petersburg State University, St. Petersburg, Russia.Murashkoite is weakly bireflectant ΔR(589 nm) = 1.2% and distinctly anisotropic with rotation tints from yellow-gray to grayish blue. The reflectance values [Rmax/Rmin% λ nm] interpolated COM wavelengths are bolded: 42.7/40.8 400; 41.9/40.0 420; 41.5/39.8 440; 41.6/39.9 460; 41.65/40.0 470; 41.7/40.1 480; 42.0/40.6 500; 42.2/40.7 520; 42.7/41.5 540; 42.9/41.7 546; 43.3/42.1 560; 43.9/42.7 580; 44.2/43.0 589; 44.5/43.4 600; 45.2/44.3 620; 45.9/45.2 640; 46.3/45.6, 650; 46.6/46.0 660; 47.2/46.9 680; 48.0/47.7 700. The ranges for representative chemical compositions (electron probe, EDS) selected from over 100 analysis (wt%) are: Fe 51.63–64.34, Ni 0–13.25, P 34.84–36.49 (Co below 0.05%). The average of unspecified number of holotype analyses is (wt%) Fe 63.82, Ni 0.88, P 35.56, total 100.26; with corresponding empirical formula based on 2 apfu: (Fe0.99Ni0.01)1.00P1.00. Dcalc = 6.108 g/cm3. The strongest lines of the powder XRD pattern [d Å (I%; hkl)] are: 2.831 (75; 011,002), 2.548 (22; 200), 2.477 (46; 102,111), 1.975 (47; 112), 1.895 (100; 202,211), 1.779 (19; 103), 1.632 (45; 013,301,020). The unit-cell parameters refined from the powder data are a = 5.098(5), b = 3.251(1), c = 5.699(3) Å, V = 94.5 Å3. The single-crystal XRD data obtained on a crystal of 0.05 × 0.06 × 0.12 mm shows murashkoite is orthorhombic, space group Pnma, a = 5.099(2), b = 3.251(2), c = 5.695(2) Å, V = 94.41 Å3, Z = 4. The crystal structure was solved and refined to R1 = 0.0305 for 131 unique I>2σ(I) reflections. Murashkoite crystallizes in the MnP structure type, which is an orthorhombically distorted homeotype of the hexagonal aristotype structure of nickeline, NiAs. The crystal structure of murashkoite is based upon layers of Fe and P atoms alternating along the a axis. The layer of Fe atoms is a distorted planar 36 net consisting of chains of Fe-Fe atoms extended along the b axis. The layer of P atoms is a non-planar 36 net with no P-P contacts shorter than 3 Å. The coordination of Fe is a distorted FeP6 octahedron complemented by four additional Fe-Fe bonds. The P site is in distorted trigonal prismatic coordination by six Fe atoms complemented by two P-P. Murashkoite is the phosphide analogue of westerveldite, FeAs, and belongs to the modderite group being an only phosphide there. Murashkoite is a natural counterpart of synthetic FeP, the compound widely used in heterogeneous catalysis and electrocatalysis. The mineral name honors Mikhail Nikolaevich Murashko (b. 1952), for his contributions to the mineralogy of the Hatrurim Formation. The holotype specimen of is deposited in the Museum of the Mining Institute (Technical University), St. Petersburg, Russia.Negevite is isotropic with no internal reflections. The reflectance values with bolded COM wavelengths [R%, λ nm] are: 53.6 400, 53.9 420, 54.3 440, 54.5 460, 54.6 470, 54.6 480, 54.8 500, 54.9 520, 55.0 540, 55.0 546, 55.1 560, 55.2 580, 55.3 589, 55.3 600, 55.4 620, 55.5 640, 55.6 650, 55.7 660, 55.6 680, 55.8 700. The ranges for selected representative chemical compositions (electron probe, WDS) (wt%) are: Fe 2.876.41, Ni 37.77–42.57, Co 2.92–3.40, Ag 0–1.01, P 39.51–42.93, S 8.33–12.78, Se 0–0.24. The average of unspecified number of holotype analyses is (wt%) Fe 2.87, Ni 42.57, Co 3.40, P 42.93, S 8.33, total 100.10; with corresponding empirical formula based on 3 apfu: (Ni0.88Co0.07Fe0.06)∑1.01 (P1.68S0.31)∑1.99. Dcalc = 4.881 g/cm3. Negevite is insoluble in cool 10% HCl. Powder XRD data was not obtained. The strongest lines in the calculated XRD powder pattern [dcalc Å (Icalc%; hkl)] are: 3.165 (54; 111), 2.741 (95; 002), 2.451 (42; 012), 2.238 (35; 112), 1.938 (54; 022), 1.653 (100; 113), 1.582 (17; 222), 1.465 (17; 123). Single-crystal XRD data obtained on a grain ~10 µm shows negevite is cubic, space group Pa3, a = 5.4816(5) Å, V = 164.71(3) Å3, Z = 4. The crystal structure was solved by direct methods and refined to R1 = 1.73% for 52 observed independent I>2σ(I) reflections. Negevite is the first natural phosphide of the pyrite structure type. It is a structural analog of vaesite (NiS2), krutovite (NiAs2), and penroseite (NiSe2). The synthetic counterpart of negevite has well-explored catalytic and photocatalytic properties. Negevite is named for its type locality in the Negev Desert, Israel The holotype is deposited in the Mineralogical Museum of the St. Petersburg State University, Russia.Transjordanite is weakly bireflectant ΔR(589 nm) = 1.8% and weakly anisotropic. The reflectance values [Rmax/Rmin% λ nm], COM wavelengths are bolded: 41.0/40.2 400; 42.2/41.1 420; 43.2/42.4 440; 44.5/43.5 460; 45.1/44.2 470; 45.7/44.8 480; 47.1/46.1 500; 48.3/47.3 520; 49.6/48.3 540; 49.9/48.5 546; 50.7/49.1 560; 51.6/49.9 580; 52.1/50.3 589; 52.6/50.8 600; 53.4/51.4 620; 54.0/51.9 640; 54.3/52.1 650; 54.5/52.3 660; 55.0/52.6 680; 55.5/53.0 700. A complete series of natural solid solutions exists between transjordanite (Ni2P) and barringerite (Fe2P) end-members. Variations of other elements (wt%) are: P 20.39–21.72, Co 0–3.09, Mo 0–3.09, and S up to 0.27 (in Cambria meteorite). The averages of unspecified numbers of electron probe WDS analysis of transjordanite from holotype / Cambria meteorite (wt%) are: Ni 67.80 / 60.55, Fe 10.20 / 18.16, Co 0 / 0.26, P 21.50 / 20.53, S 0 / 0.27, total 99.50 / 99.77. Corresponding empirical formulae based on 3 apfu are (Ni1.72Fe0.27)∑1.99P1.02 / (Ni1.52Fe0.48Co0.01)∑2.01(P0.98S0.01)∑0.99. Dcalc = 7.297(5) g/cm3. The strongest lines of the powder XRD pattern [(d Å (I%; hkl)] are: 2.211 (100; 111), 2.028 (42; 201), 1.926 (37; 210), 1.697 (21; 300), 1.676 (18; 002), 1.672 (18; 211), 1.264 (15; 212), 1.192 (15; 302), 1.104 (20; 321). Single-crystal study on a grain 0.08 × 0.06 × 0.05 mm shows transjordanite is hexagonal, space group P62m; unit-cell parameters for the holotype are: a = 5.8897(3), c = 3.3547(2) Å, V = 100.78 Å3, Z = 3. The crystal structure was solved and refined to R1 = 0.013 for 190 observed independent I>2σ(I) reflections. It consists of two types of infinite rods propagated along the c axis. The first rod is composed of corner-sharing M(1)P4 tetrahedra alternating with the empty square pyramids ☐P5. The next rod is built up of edge-sharing M(2)P5 square pyramids alternating with the empty tetrahedra ☐P4. The rods are arranged into a framework via common P–P edges of adjacent metal-phosphorus polyhedra. The mineral was named for the type locality on the Transjordan Plateau in West Jordan. The holotype is deposited at the Mineralogical Museum of the St. Petersburg State University, Russia.Zuktamrurite is weakly bireflectant ΔR(589 nm) = 2.8% and distinctly anisotropic with bluish rotation tints. The reflectance values (Rmax/Rmin% λ nm), interpolated COM wavelengths are bolded: 52.5/49.8 400; 51.8/48.9 420; 51.2/48.2 440; 50.6/47.5 460; 50.4/47.2 470; 50.2/46.9 480; 49.8/46.7 500; 49.5/46.4 520; 49.2/46.3 540; 49.16/46.23 546; 49.0/46.2 560; 49.0/46.2 580; 48.97/46.16 589; 49.0/46.2 600; 49.1/46.2 620; 49.3/46.3 640; 49.40/46.40 650; 49.5/46.5 660; 49.8/46.7 680; 50.0/47.0 700. The ranges for 20 selected representative electron probe EDS analyses (wt%) are: Fe 37.37–46.76, Ni 1.37–9.84, Co 00.69, P 47.50–53.74). S 0–4.52. The average of five-point analyses of holotype is (wt%) Fe 40.23, Ni 7.97, P 51.70, total 99.90; with corresponding empirical formulae based on 3 apfu: (Fe0.86Ni0.16)1.02P1.98. Dcalc = 5.003 g/cm3. The strongest lines of the powder XRD pattern [(d Å (I%; hkl)] are: 3.714 (54; 110), 2.820 (31; 020), 2.451 (100; 120,101), 2.259 (25; 210), 2.242 (55; 111); 1.760 (37; 211), 1.579 (23; 310), 1.564 (26; 031). The unit-cell parameters refined from the powder data are a = 4.927(5), b = 5.645(1), c = 2.815(3) Å, V = 78.3 Å3. The single-crystal XRD data obtained on a crystal of 0.01 × 0.01 × 0.01 mm shows zuktamrurite is orthorhombic, space group Pnnm, a = 4.9276(6), b = 5.6460(7), c = 2.8174(4) Å, V = 78.38 Å3, Z = 2. The crystal structure was solved by direct methods and refined to R1 = 0.0121 based on 109 unique I>2σ(I) reflections. Zuktamru-rite is the phosphide analogue of löllingite FeAs2. Distorted octahedra MP6 (M = Fe,Ni) are arranged sharing common edges into infinite chains propagated along the c axis. The length of the c axis corresponds to the shortest M–M distance. Octahedra belonging to adjacent chains are connected via shared corners forming a three-dimensional framework. The characteristic feature of zuktamrurite structure is the occurrence of P–P bonds like the S–S in the marcasite. The P–P dumbbell in zuktamrurite plays the role of the anion and its structural formula can be written as Fe2+[P2]2−. Zuktamrurite is the most phosphorus-rich phosphide found in nature so far. The mineral is named for the Zuk-Tamrur cliff (Dead Sea) located nearby the type locality (Halamish Wadi). The holotype specimen is deposited in the Mineralogical Museum of Saint-Petersburg State University, St. Petersburg, Russia. D.B.I.V. Pekov, N.V. Zubkova, V.O. Yapaskurt, D.I. Belakovskiy, I.S. Lykova, S.N. Britvin, A.G. Turchkova, and D.Y. Pushcharovky (2019) Kamenevite, K2TiSi3O9⋅H2O, a new mineral with microporous titanosilicate framework from the Khibiny alkaline complex, Kola peninsula, Russia. European Journal of Mineralogy, 31(3), 557–564.I.V. Pekov, N.V. Zubkova, V.O. Yapaskurt, D.I. Belakovskiy, I.S. Lykova, S.N. Britvin, A.G. Turchkova, and D.Y. Pushcharovky (2019) Kamenevite, K2TiSi3O9⋅H2O, a new mineral with microporous titanosilicate framework from the Khibiny alkaline complex, Kola peninsula, Russia. European Journal of Mineralogy, 31(3), 557–564.Kamenevite (IMA 2017-021), ideally K2TiSi3O9⋅H2O, orthorhombic, was discovered in K-rich peralkaline pegmatites related to rischorrites associated with apatite-nepheline rocks at two deposits: Oleniy Ruchey (Reindeer Stream) underground mine, Mt. Suoluaiv and Rasvumchorr mine, Mt. Rasvumchorr, Khibiny complex, Kola Peninsula, Russia. The holotype specimen originates from the pegmatite which was found in several lumps in the dump of Oleniy Ruchey apatite deposit. The pegmatite is mainly composed of potassic feldspar, nepheline, sodalite, aegirine, arfvedsonite series amphibole, lamprophyllite, lomonosovite, eudialyte with and the accessory shcherbakovite, sphalerite, galena, and molybdenite. Pockets with hydrothermal minerals (pectolite, villiaumite, ershovite, shafranovskite) found in some part of the pegmatite enriched in green acicular aegirine. Minor minerals are umbite, sidorenkite, djerfisherite, rasvumite, and Na-bearing neotocite. Kamenevite replaces lomonosovite and fills cracks in crystals of slightly etched lomonosovite. It forms coarse lamellar crystals up to 0.02 × 0.1 × 0.3 mm. Crystals are combined in aggregates up to 0.7 mm. Individual crystals are rectangular or irregular and flattened on [010]. Pinacoid {010} is the major crystal form, lateral faces are probably pinacoids {100} and {001}. Kamenevite from a dump material mined at the level +470 m of Rasvumchorr underground apatite mine was found later in a similar assemblage in a pegmatite mainly consisting of potassic feldspar, nepheline, sodalite, Na–Mg–Fe3+-enriched hedenbergite, aegirine, potassic-arfvedsonite, lamprophyllite, eudialyte, and lomonosovite; with subordinate and accessory annite, fluorapatite, shcherbakovite, lobanovite, sphalerite, galena, and molybdenite. Sporadically the pegmatite contains abundant and unusually diverse (especially in part of potassium-rich silicates and sulfides) hydrothermal mineralization forming lenticular or irregular nests up to 20 cm. These nests are formed of pectolite, natrolite, villiaumite, lovozerite-group minerals, shafranovskite, zakharovite, ershovite (and highly hydrated products of its alteration), paraershovite, tinaksite, phosinaite-(Ce), umbite, tiettaite, lithosite, barytolamprophyllite, chkalovite, loparite, nacaphite, natrophosphate, K-rich vishnevite, cryptophyllite, shlykovite, mountainite, fluorapophyllite-(K), neotocite, cobaltite, jerfisherite, chlorbartonite, and rasvumite. At the Rasvumchorr mine, kamenevite occurs as equant or flattened grains up to 0.15 mm across, or as cavernous and granular accumulations up to 0.1 × 0.4 mm embedded in aggregates of different hydrous silicates. Kamenevite is closely associated with shafranovskite, altered ershovite and lovozerite. The new mineral is transparent, colorless in individual grains and white in aggregates. It has a white streak and vitreous lustre. Kamenevite is brittle with stepped fracture and good cleavage on {010}. The Mohs hardness is ca. 4; Dmeas = 2.69(2) and Dcalc = 2.698 g/cm3 (both for the holotype). In plane-polarized transmitted light kamenevite is colorless, non-pleochroic. It is optically biaxial (–), α = 1.650(4), β = 1.678(5), γ = 1.685(5) (589 nm), 2Vmeas = 60(10)°, 2Vcalc = 52°; Y = b. Dispersion of optical axes was not observed. The average of 4 WDS analyses on the holotype [wt% (range)] is: Na2O 0.48 (0.21–0.69), K2O 24.37 (24.11–24.53), CaO 0.13 (0.10–0.16), Fe2O3 0.35 (0.13–0.52), SiO2 48.78 (47.19–50.29), TiO2 20.30 (19.75–20.66), ZrO2 0.89 (0.41–1.83), Nb2O5 0.35 (00.63), H2O 4.85 (by structure refinement based on 1 H2O pfu), total 100.50. The empirical formula based on 10 O atoms pfu is (K1.92Na0.06Ca0.01)Σ1.99(Ti0.94Zr0.03Fe0.02Nb0.01)Σ1.00S3.01O9·H2O. The strongest lines in the powder X-ray diffraction pattern are [d Å (I%; hkl)]: 7.92 (70; 110), 6.51 (47; 020), 5.823 (95; 101), 2.988 (84; 301,122), 2.954 (100; 041,320), 2.906 (68; 311,202), 2.834 (69, 141,212). The crystal structure of kamenevite was solved by direct methods and refined to R1 = 3.84%. The new mineral is orthorhombic, P212121, a = 9.9166(4), b = 12.9561(5), c = 7.1374(3) Å, V = 917.02(6) Å3, Z = 4. The crystal structure of kamenevite is based on a microporous heteropolyhedral framework built by [Si3O9]∞ wollastonite-type chains linked by isolated Ti-centred octahedra. The K+ cations and H2O groups are located in wide and narrower [001] channels. Kamenevite is isostructural with umbite, K2ZrSi3O9·H2O. The synthetic analogue of kamenevite known as titanosilicate AM-2, K2TiSi3O9·H2O, which displays strong zeolitic properties. The mineral is named after the outstanding Russian geologist Evgeniy Arsenievich Kamenev (1934–2017) for his great contribution to the geological study and exploration of the Khibiny complex apatite deposits. The type specimen is deposited in the collections of the Fersman Mineralogical Museum of the Russian Academy of Sciences, Moscow, Russia. Yu.U.I. Campostrini, F. Demartin, and M. Scavini (2019) Russoite, NH4ClAs23+O3(H2O)0.5, a new phylloarsenite mineral from Solfatara Di Pozzuoli, Napoli, Italy. Mineralogical Magazine, 83(1), 89–94.I. Campostrini, F. Demartin, and M. Scavini (2019) Russoite, NH4ClAs23+O3(H2O)0.5, a new phylloarsenite mineral from Solfatara Di Pozzuoli, Napoli, Italy. Mineralogical Magazine, 83(1), 89–94.Russoite (IMA 2015-105), NH4ClA23+O3(H2O)0.5, hexagonal, is a new mineral found in the volcanic fumarole “Bocca Grande” at Solfatara di Pozzuoli, near the town of Pozzuoli, Campi Flegrei area, Napoli, Italy. The fumarole has temperature ~160 °C. Russoite is closely associated with alacránite, dimorphite, realgar, mascagnite, salammoniac, and an amorphous arsenic sulfide. Other minerals found in the same fumarole are adranosite, adranosite-(Fe), efremovite, huizingite-(Al), and godovikovite. Russoite forms rosette-like intergrowths or subparallel aggregates of hexagonal plates flattened on {001} and bounded by {100} up to ~300 × 15 μm. The aggregates are sometimes yellowish due to admixed amorphous arsenic sulfide. Crystals are colorless to white, transparent to translucent, with vitreous luster, white streak and no apparent twinning. No fluorescence in UV radiation was observed. Russoite is brittle with perfect cleavage on {001}and irregular fracture. Mohs hardness was not determined; Dmeas = 2.89(1), Dcalc = 2.911 g/cm3. The mineral is optically uniaxial (–), ω = 1.810(6) and ε = 1.650(5) (white light). FTIR spectrum shows bands at (cm–1): 3254, 3145, 1403 (ammonium); 3454, 3398, 1625 (H2O); 670, 604 (arsenite bands); ~2400 weak (atmospheric CO2); 1110 (minor OH–, partially replacing the chloride ion). The average of six electron probe EDS analyses (performed under 20 kV excitation voltage, 10 pA beam current and 2 μm beam diameter to minimize the damage and deammonation under the beam) on a crystals flat surfaces [wt% (range)] is: K2O 1.05 (0.65–1.22), As2O3 74.16 (73.25–75.80), Cl 11.96 (11.73–12.94), Br 0.44 (0.25–0.80), [(NH4)2O 9.04 and H2O 3.35 – by stoichiometry]; sum 100.00, −O=Cl, Br 2.75, total 97.25. No amounts of other elements above 0.1 wt% were detected. The empirical formula based on 4.5 anions pfu and K + NH4 = 1 atom pfu is [(NH4)0.94,K0.06]Σ1.00 (Cl0.91,Br0.01)Σ0.92As2.02O3(H2O)0.5. The strongest X-ray powder diffraction lines are [d Å (I%; hkl)]: 12.63 (19; 001), 6.32 (100; 002), 4.547 (75; 100), 4.218(47; 003), 3.094 (45; 103), 2.627 (46; 110), 2.428 (31; 112), 1.820 (28; 115). The unit-cell parameters refined from powder XRD data are a = 5.259(2), c = 12.590(5) Å, V = 301.55 Å3. Single-crystal XRD data shows russoite is hexagonal, space group P622, a = 5.2411(7), c = 12.5948(25) Å, V = 299.6 Å3, Z = 2. The crystal structure was refined to R = 0.0518 for 311 reflections with I > 2σ(I) using as starting model a russoite synthetic analogue (Edstrand and Blomqvist 1955). The refinement revealed a different location of the ammonium cation and H2O groups compare to that reported for the synthetic phase. As for other minerals of phylloarsenite family (lucabindiite, torrecillasite, and gajardoite), the crystal structure of russoite contains electrically neutral As2O3 sheets formed by As3+O3 pyramids that share O atoms to form six-membered rings. These sheets are topologically identical to those found in lucabindiite and gajardoite. Ammonium cations are located between the sheets and the halide anions are outside of them. Additional ammonium cations and H2O are in a layer between two levels of chloride anions interacting with each other via hydrogen bonds. The name russoite honors Massimo Russo (b. 1960), researcher at Osservatorio Vesuviano, Istituto Nazionale di Geofisica e Vulcanologia, Napoli, for his contributions to the mineralogy of Italian volcanoes. Holotype material is deposited in the Reference Collection of the DCSSI, Università degli Studi di Milano, Italy. D.B.I. Campostrini, F. Demartin, and M. Russo (2019) Sbacchiite, Ca2AlF7, a new fumarolic mineral from the Vesuvius volcano, Napoli, Italy. European Journal of Mineralogy, 31(1), 153–158.I. Campostrini, F. Demartin, and M. Russo (2019) Sbacchiite, Ca2AlF7, a new fumarolic mineral from the Vesuvius volcano, Napoli, Italy. European Journal of Mineralogy, 31(1), 153–158.Sbacchiite (IMA 2017-097), Ca2AlF7, orthorhombic, is a new mineral discovered in a fossil fumarole “cotunnite pit” (active since eruption in 1944) at the eastern rim of the crater of Vesuvius volcano, Napoli, Italy (40°49′ 21.98″ N; 14°25′ 43.66″ E). The temperature in the fumarole have reached a maximum of ~ 800 °C in 1950 and then was decreasing to ~460 °C in 1960 and to ~7080 °C currently. Sbacchiite occurs in small aggregates closely associating with gearsksutite, usovite, creedite, and opal. Other minerals discovered in the fumarole are artroeite, ammineite, fluornatrocoulsellite, and parascandolaite. The formation of sbacchiite took place between 1948 and 1960 or shortly thereafter being a high-temperature encrustation resulted from extracting aluminium and calcium from the rocks by HF activity. The mineral was found in only one specimen of ~7 cm, later trimmed to a few. Sbacchiite crystals transparent or translucent, colorless, with vitreous luster and white streak. They have a very steep bipyramidal habit, are elongated by [100], and truncated by {100} pinakoid. The mineral is brittle with no distinct cleavage and no apparent twinning. Mohs hardness was not determined; Dmeas = 3.08(2), Dcalc = 3.116 g/cm3. Sbacchiite is optically biaxial (+), α = 1.379(4), β = 1.384(4), γ = 1.390(4) (white light), 2Vmeas = 83 (2), 2Vcalc = 85.1. The average of six electron probe EDS analyses (performed under 20 kV excitation voltage, 10 pA beam current, and 2 μm beam diameter to minimize the damage and deammonation under the beam) on unpolished flat surface [wt% (range)] is: Ca 33.41 (32.98–34.57), Mg 0.26 (0.17–0.30), Al 10.97 (10.78–11.14), F 54.67 (54.06–55.22), total 99.31. The empirical formula based on 10 apfu is Ca2.02Mg0.03Al0.99F6.97. The strongest X-ray powder diffraction lines are [d Å (I%; hkl)]: 3.840 (45; 200), 3.563 (85; 201), 3.499 (100; 020), 2.899 (55; 013), 2.750 (30; 212), 2.281 (20; 104), 2.255 (52; 302), 2.173 (36; 131). The unit-cell parameters refined from powder data are a = 7.674(1), b = 6.996(1), c = 9.553(1) Å, V = 512.9 Å 3. Single-crystal XRD data obtained on a crystal fragment of 0.05 × 0.01 × 0.01 mm shows sbacchiite is orthorhombic, space group Pnma, a = 7.665(2), b = 6.993(1), c = 9.566(2) Å, V = 512.2 Å3, Z = 4. The crystal structure was solved starting from the atomic positions of synthetic Ca2AlF7 (Domsele and Hoppe 1980) and refined to R = 0.0479 for 457 observed I>2σ(I) reflections. It represents a framework of “isolated” [AlF6] octahedra, [Ca(1)F7] distorted pentagonal bipyramids and [Ca(2) F7+1] distorted polyhedra. Ca(1) and Ca(2) polyhedra are linked by common edges alternating along [010] and along [001]. Along [100], only the Ca(1) pentagonal bipyramids are connected by bridging corners. anions. One face of [AlF6] octahedra is shared with the adjacent Ca(2) polyhedron and, on the opposite face, an edge and a corner are shared with two adjacent Ca(1) polyhedra. All fluorine atoms in five F sites are threefold coordinated. The sbacchiite structure has some common features with those of carlhintzeite Ca2AlF7·H2O (where “isolated” [AlF6] octahedra have also been observed but in different environment) and jakobssonite, CaAlF5 (containing instead vertex-sharing chains of [AlF6] octahedra, interconnected by chains of [CaF7] pentagonal bipyramids. The name honors Massimo Sbacchi (b. 1958), biologist and mineral collector, for his long-time field collaboration and continuous supply of interesting material for study. A holotype specimen is deposited at the Dipartimento di Chimica, Università degli Studi di Milano, Italy. Cotype is in the Museum of Osservatorio Vesuviano (Ercolano, Napoli), Italy. D.B.I.V. Pekov, N.V. Zubkova, N.V. Chukanov, V.O. Yapaskurt, S.N. Britvin, A.V. Kasatkin, and D.Y. Pushcharovky (2019) Oyelite: new mineralogical data, crystal structure model and refined formula Ca5BSi4O13(OH)3⋅4H2O. European Journal of Mineralogy, 31(3), 595–608.I.V. Pekov, N.V. Zubkova, N.V. Chukanov, V.O. Yapaskurt, S.N. Britvin, A.V. Kasatkin, and D.Y. Pushcharovky (2019) Oyelite: new mineralogical data, crystal structure model and refined formula Ca5BSi4O13(OH)3⋅4H2O. European Journal of Mineralogy, 31(3), 595–608.The new data on chemistry, IR spectroscopy and a unique, novel structure type refinement for an “old” mineral oyelite were obtained on the specimen from its new location at Bazhenovskoe asbestos deposit, town of Asbest, Urals, Russia. Published data on that mineral were revisited. The new ideal formula is Ca5BSi4O13(OH)3⋅4H2O. The mineral is triclinic, P1, a = 7.2557(5), b = 10.7390(11), c = 11.2399(8) Å, α = 89.432(7), β = 89.198(6), γ = 72.097(8)°, V = 833.30 Å3, Z = 2. The mineral was first reported (Heller and Taylor 1956) from the Crestmore quarries, Riverside County, California, U.S.A., as “the 10 Å hydrate” related to tobermorite. Considered relation to tobermorite was based on incomplete (no B was detected) semi-quantitative chemical data and some similarity of powder XRD patterns with refined parameters of orthorhombic unit cell: a = 11.2, b = 7.32, c = 20.5 Å. As it appeared later (Murdoch 1961) the mineral from Crestmore contains several percent of B2O3. In 1980, “10 Å tobermorite” was described from the Fuka Mine, Fuka, Bitchu-cho, Okayama Prefecture, Japan (Kusachi et al. 1980). Next, the mineral was submitted and approved by IMA as a new mineral oyelite (IMA 1980-103) presumably belonging to the tobermorite group (Kusachi et al. 1981). The description was based on specimens from the Fuka Mine (holotype) and from Crestmore. The simplified formula was suggested as Ca10Si8B2O29·nH2O (n = 9.5–12.5) with orthorhombic unit-cell dimensions a = 11.25, b = 7.25, c = 20.46 Å. In 1986 oyelite was reported from Suisho-dani, Ise City, Mie Prefecture, Japan, and formula was adjusted to Ca10Si8B2O29·12H2O. Next find in Kalahari Manganese Field, South Africa, in the N’Chwaning II mine (Von Bezing et al. 1991) produced spectacular oyelite specimens well-known and desirable for mineral collectors, however the quality of crystals did not allow the structural study. Raman spectroscopy and thermal studies were added, parameters of the orthorhombic or pseudo-orthorhombic sub-cell were given as a′ = 5.578(6), b′ = 3.596(4), c′ = 20.46(2) Å, and the simplified formula was modified to Ca5BSi4O14(OH)·6H2O (Biagioni et al. 2012). Oyelite is a hydrothermal mineral formed in late-stage assemblages related to various geological formations. At Crestmore and Fuka, the oyelite-bearing parageneses are related to classic calcic skarns, at Suisho-dani to rodingite embedded in serpentinite and at N’Chwaning to strata-bound manganese ores in metamorphosed volcanogenic-sedimentary rocks. At Bazhenovskoe deposit oyelite found in rodingite body at the Southern open pit. It is associated with tatarinovite, pectolite, xonotlite, and calcite in cavities in rodingite consisting of pale pinkish orange grossular with subordinate white to pale gray diopside. Oyelite forms elongated lamellar crystals up to 0.3 × 4 mm, divergent and combined in fan-shaped aggregates or radial rosettes up to 8 mm in diameter and their clusters up to 7 × 12 mm. Single crystals of oyelite are colorless, and aggregates are pearly-white. The chemical composition of oyelite crystal used for single-crystal study determined by electron probe WDS analysis is [wt%]: CaO 42.29, B2O3 5.38, SiO2 36.65, H2O 15.07 [by structure and based on (OH)3(H2O)4 pfu], total 99.39. The empirical formula is Ca4.96B1.02Si4.01O13(OH)3·4H2O. The bands in IR absorption spectra of the oyelite are (cm–1): 2200–3500 (O–H-stretching); including bands at 2885–2905 and 2233–2239 (acid OH groups forming strong and very strong hydrogen bonds, respectively); 1500–1800 (H–O–H bending); 1220–1270 and 850–1100 (B–O- and Si–O-stretching modes, respectively); 500–800 (mixed B–O–H, Si–O–H, O–Si–O and O–B–O bending modes); 400–500 (Si–O–Si stretching). The bands at 3969–3315 and 1350 cm–1 are assigned to BO–H and SiO···H stretching vibrations, respectively. The difference between the IR spectra of oyelite from Bazhenovskoe and N’Chwaning and that of tobermorite is discussed. The strongest lines in the powder X-ray diffraction pattern are [d Å (I%; hkl)]: 10.22 (71; 010), 4.921 (29; 012,012), 3.409 (23; 121,211,121,030), 3.067 (24; 212), 3.031 (38; 023,212), 2.917 (100; 202,032,222), 2.812 (42, 231,004). The crystal structure of oyelite was solved by direct methods and refined to R1 = 12.01%. It contains two different kinds of tetrahedral units of different topology, both linear and running along [100]. The first type (I) is the borosilicate chain [BSi2O7(OH)2]∞ consisting of disilicate groups Si2O7 connected via single BO2(OH)2 tetrahedra. The second type (II) is the interrupted chain (“dotted line”) formed by Si2O6(OH) disilicate groups bonded to each other by very strong H-bonds. The tetrahedral units I and II are linked to (010) layers of sevenfold-coordinated Ca polyhedra of three different types: CaO6(H2O), CaO3(H2O)4, and CaO6OH. The structural formula of oyelite is Ca5[BSi2O7(OH)2][Si2O6(OH)]·4H2O. The structure can be considered as “the intermediate link” between inosilicates with wollastonite-type chains and sorosilicates with isolated disilicate groups. Oyelite is crystal-chemically close to vistepite, SnMn4B2Si4O16(OH)2, in part of the tetrahedral BSiO-chain, and also to some Ca-rich silicates, mostly of tobermorite-supergroup, in the structure of the layered motif built by Ca-centred polyhedra. Yu.U.