当前位置: X-MOL 学术Appl. Surf. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
One-step for in-situ etching and reduction to construct oxygen vacancy modified MoO2/reduced graphene oxide nanotubes for high performance lithium-ion batteries
Applied Surface Science ( IF 6.3 ) Pub Date : 2021-02-01 , DOI: 10.1016/j.apsusc.2020.147992
Yanqi Feng , Hui Liu

Abstract Rational design of nanostructure and improved Li-ion diffusion kinetics is of significant in pursuit stable electrode architecture and high performance lithium-ion batteries. Here we report a one-step self-templated method to simultaneously accomplish in-situ etching and reduction with the assistant of thiourea to fabricate one-dimensional hollow MoO2/reduced graphene oxide nanotubes (denote as H-MoO2@rGO nanotubes) from MoO3@reduced graphene oxide (MoO3@rGO). The functionalization of MoO3 surface is of significant for etching to keep the architecture integrity during the preparation process. At the same time, the introduced oxygen vacancy cause a lopsided charge distribution around the vacancy to generate a foreign coulomb force for facilitating the Li-ion migration. The fabricated 1D H-MoO2@rGO nanotubes not only offer direct electron pathways, greatly shorten ion diffusion length, facilitating electrical transport, but also effectively buffer large volume change during cycling. The as prepared H-MoO2@rGO nanotubes deliver enhanced Li-ion diffusion kinetics and reliability for long cycle life. Thus, 1D H-MoO2@rGO nanotubes exhibit superior stability (1078 mAh g−1 after 200 cycles at 0.1 A g−1), rate performance and high specific capacity (798 mAh g−1, 0.5 A g−1). This work shows a feasible method to simplify the procedures to get access to steady hollow structure with abundant oxygen vacancies, which is of important to meet the demand of lithium-ion batteries for practical application.

中文翻译:

原位蚀刻还原一步法构建高性能锂离子电池的氧空位改性MoO2/还原氧化石墨烯纳米管

摘要 纳米结构的合理设计和改进的锂离子扩散动力学对于追求稳定的电极结构和高性能锂离子电池具有重要意义。在这里,我们报告了一种一步自模板方法,在硫脲的辅助下同时完成原位蚀刻和还原,以从 MoO3@ 制造一维空心 MoO2/还原氧化石墨烯纳米管(表示为 H-MoO2@rGO 纳米管)还原氧化石墨烯(MoO3@rGO)。MoO3 表面的功能化对于蚀刻以在制备过程中保持结构完整性具有重要意义。同时,引入的氧空位导致空位周围的电荷分布不均,从而产生外来库仑力以促进锂离子迁移。所制备的一维 H-MoO2@rGO 纳米管不仅提供了直接的电子通路,大大缩短了离子扩散长度,促进了电传输,而且还有效地缓冲了循环过程中的大体积变化。所制备的 H-MoO2@rGO 纳米管具有增强的锂离子扩散动力学和可靠性,可延长循环寿命。因此,一维 H-MoO2@rGO 纳米管表现出优异的稳定性(在 0.1 A g-1 下循环 200 次后为 1078 mAh g-1)、倍率性能和高比容量(798 mAh g-1、0.5 A g-1)。这项工作表明了一种可行的方法来简化获得具有丰富氧空位的稳定空心结构的程序,这对于满足锂离子电池的实际应用需求具有重要意义。还能有效缓冲骑行过程中的大音量变化。所制备的 H-MoO2@rGO 纳米管具有增强的锂离子扩散动力学和可靠性,可延长循环寿命。因此,一维 H-MoO2@rGO 纳米管表现出优异的稳定性(在 0.1 A g-1 下循环 200 次后为 1078 mAh g-1)、倍率性能和高比容量(798 mAh g-1、0.5 A g-1)。这项工作表明了一种可行的方法来简化获得具有丰富氧空位的稳定空心结构的程序,这对于满足锂离子电池的实际应用需求具有重要意义。还能有效缓冲骑行过程中的大音量变化。所制备的 H-MoO2@rGO 纳米管具有增强的锂离子扩散动力学和可靠性,可延长循环寿命。因此,一维 H-MoO2@rGO 纳米管表现出优异的稳定性(在 0.1 A g-1 下循环 200 次后为 1078 mAh g-1)、倍率性能和高比容量(798 mAh g-1、0.5 A g-1)。这项工作表明了一种可行的方法来简化获得具有丰富氧空位的稳定空心结构的程序,这对于满足锂离子电池的实际应用需求具有重要意义。倍率性能和高比容量(798 mAh g-1,0.5 A g-1)。这项工作表明了一种可行的方法来简化获得具有丰富氧空位的稳定空心结构的程序,这对于满足锂离子电池的实际应用需求具有重要意义。倍率性能和高比容量(798 mAh g-1,0.5 A g-1)。这项工作表明了一种可行的方法来简化获得具有丰富氧空位的稳定空心结构的程序,这对于满足锂离子电池的实际应用需求具有重要意义。
更新日期:2021-02-01
down
wechat
bug