当前位置:
X-MOL 学术
›
J. Am. Math. Soc.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Non-uniqueness and mean-field criticality for percolation on nonunimodular transitive graphs
Journal of the American Mathematical Society ( IF 3.5 ) Pub Date : 2020-09-23 , DOI: 10.1090/jams/953 Tom Hutchcroft
Journal of the American Mathematical Society ( IF 3.5 ) Pub Date : 2020-09-23 , DOI: 10.1090/jams/953 Tom Hutchcroft
We study Bernoulli bond percolation on nonunimodular quasi-transitive graphs, and more generally graphs whose automorphism group has a nonunimodular quasi-transitive subgroup. We prove that percolation on any such graph has a non-empty phase in which there are infinite light clusters, which implies the existence of a non-empty phase in which there are infinitely many infinite clusters. That is, we show that $p_c
中文翻译:
非单模传递图上渗透的非唯一性和平均场临界性
我们研究了非单模准传递图上的伯努利键渗透,更一般地,自同构群具有非单模准传递子群的图。我们证明在任何这样的图上的渗透都有一个非空阶段,其中有无限个光团,这意味着存在一个非空阶段,其中有无限多的无限个团。也就是说,我们证明 $p_c
更新日期:2020-09-23
中文翻译:
非单模传递图上渗透的非唯一性和平均场临界性
我们研究了非单模准传递图上的伯努利键渗透,更一般地,自同构群具有非单模准传递子群的图。我们证明在任何这样的图上的渗透都有一个非空阶段,其中有无限个光团,这意味着存在一个非空阶段,其中有无限多的无限个团。也就是说,我们证明 $p_c