当前位置: X-MOL 学术J. Am. Math. Soc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Large genus asymptotics for volumes of strata of abelian differentials
Journal of the American Mathematical Society ( IF 3.5 ) Pub Date : 2020-09-28 , DOI: 10.1090/jams/947
Amol Aggarwal

In this paper we consider the large genus asymptotics for Masur-Veech volumes of arbitrary strata of Abelian differentials. Through a combinatorial analysis of an algorithm proposed in 2002 by Eskin-Okounkov to exactly evaluate these quantities, we show that the volume $\nu_1 \big( \mathcal{H}_1 (m) \big)$ of a stratum indexed by a partition $m = (m_1, m_2, \ldots , m_n)$ is $\big( 4 + o(1) \big) \prod_{i = 1}^n (m_i + 1)^{-1}$ as $2g - 2 = \sum_{i = 1}^n m_i$ tends to $\infty$. This confirms a prediction of Eskin-Zorich and generalizes some of the recent results of Chen-Moeller-Zagier and Sauvaget, who established these limiting statements in the special cases $m = 1^{2g - 2}$ and $m = (2g - 2)$, respectively. We also include an Appendix by Anton Zorich that uses our main result to deduce the large genus asymptotics for Siegel-Veech constants that count certain types of saddle connections.

中文翻译:

阿贝尔微分地层体积的大属渐近

在本文中,我们考虑了阿贝尔微分的任意层​​的 Masur-Veech 体积的大属渐近性。通过对 Eskin-Okounkov 于 2002 年提出的算法的组合分析来精确评估这些数量,我们表明,由 a 索引的层的体积 $\nu_1 \big( \mathcal{H}_1 (m) \big)$分区 $m = (m_1, m_2, \ldots , m_n)$ 是 $\big( 4 + o(1) \big) \prod_{i = 1}^n (m_i + 1)^{-1}$ 作为$2g - 2 = \sum_{i = 1}^n m_i$ 趋向于 $\infty$。这证实了 Eskin-Zorich 的预测,并概括了 Chen-Moeller-Zagier 和 Sauvaget 最近的一些结果,他们在特殊情况下建立了这些限制性陈述 $m = 1^{2g - 2}$ 和 $m = (2g - 2)$,分别。
更新日期:2020-09-28
down
wechat
bug