当前位置:
X-MOL 学术
›
Sustain. Energy Fuels
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Preparation and investigation of 1-(3-aminopropyl)imidazole functionalized polyvinyl chloride/poly(ether ketone cardo) membranes for HT-PEMFCs
Sustainable Energy & Fuels ( IF 5.0 ) Pub Date : 2020-09-28 , DOI: 10.1039/d0se01123a Ruihong Liu 1, 2, 3, 4, 5 , Xuefu Che 1, 2, 3, 4, 5 , Xiong Chen 1, 2, 3, 4, 5 , Hao Li 1, 2, 3, 4, 5 , Jianhao Dong 1, 2, 3, 4, 5 , Zhe Hao 5, 6, 7, 8 , Jingshuai Yang 1, 2, 3, 4, 5
Sustainable Energy & Fuels ( IF 5.0 ) Pub Date : 2020-09-28 , DOI: 10.1039/d0se01123a Ruihong Liu 1, 2, 3, 4, 5 , Xuefu Che 1, 2, 3, 4, 5 , Xiong Chen 1, 2, 3, 4, 5 , Hao Li 1, 2, 3, 4, 5 , Jianhao Dong 1, 2, 3, 4, 5 , Zhe Hao 5, 6, 7, 8 , Jingshuai Yang 1, 2, 3, 4, 5
Affiliation
Developing high temperature proton exchange membranes (HT-PEMs) with high conductivity and mechanical strength simultaneously is a considerable challenge for the HT-PEM fuel cell (HT-PEMFC). Herein, a 1-(3-aminopropyl)imidazole (APIm) functionalized low-cost poly(vinyl chloride) (PVC) membrane (PVC-APIm) with superior phosphoric acid (PA) doping content and high proton conductivity is synthesized via a gentle and facile method with no need for the chloromethylation procedure. The poly(ether ketone cardo) (PEK-C) polymer is blended with PVC-APIm to provide sufficient mechanical robustness. Interestingly, blending PEK-C not only improves the mechanical stability, but also increases the PA doping content of membranes. As a result, PA doped PVC-APIm/x%PEK-C membranes possess increased tensile strength and upgraded conductivity simultaneously. The PVC-APIm/10%PEK-C/166%PA membrane exhibits a low area swelling of 45%, high conductivity of 0.132 S cm−1 at 180 °C and suitable tensile strength of 11.8 MPa at room temperature. The single cell performance of this membrane demonstrates the technical feasibility of the PVC-APIm/x%PEK-C/PA membrane for the HT-PEMFC.
中文翻译:
1-(3-氨基丙基)咪唑官能化聚氯乙烯/聚醚酮心基膜的制备及研究
同时开发具有高电导率和机械强度的高温质子交换膜(HT-PEM)是HT-PEM燃料电池(HT-PEMFC)的巨大挑战。本文通过温和的方法合成了具有优异的磷酸(PA)掺杂含量和高质子传导性的1-(3-氨基丙基)咪唑(APIm)功能化低成本聚氯乙烯(PVC)膜(PVC-APIm)简便的方法,无需进行氯甲基化步骤。将聚(醚酮cardo)(PEK-C)聚合物与PVC-APIm共混以提供足够的机械强度。有趣的是,共混PEK-C不仅改善了机械稳定性,而且还增加了膜的PA掺杂含量。结果,PA掺杂了PVC-APIm / x%PEK-C膜同时具有更高的拉伸强度和更高的电导率。PVC-APIm / 10%PEK-C / 166%PA膜的低面积膨胀率为45%,在180°C下的电导率为0.132 S cm -1,在室温下的拉伸强度为11.8 MPa。该膜的单电池性能证明了用于HT-PEMFC的PVC-APIm / x%PEK-C / PA膜的技术可行性。
更新日期:2020-11-03
中文翻译:
1-(3-氨基丙基)咪唑官能化聚氯乙烯/聚醚酮心基膜的制备及研究
同时开发具有高电导率和机械强度的高温质子交换膜(HT-PEM)是HT-PEM燃料电池(HT-PEMFC)的巨大挑战。本文通过温和的方法合成了具有优异的磷酸(PA)掺杂含量和高质子传导性的1-(3-氨基丙基)咪唑(APIm)功能化低成本聚氯乙烯(PVC)膜(PVC-APIm)简便的方法,无需进行氯甲基化步骤。将聚(醚酮cardo)(PEK-C)聚合物与PVC-APIm共混以提供足够的机械强度。有趣的是,共混PEK-C不仅改善了机械稳定性,而且还增加了膜的PA掺杂含量。结果,PA掺杂了PVC-APIm / x%PEK-C膜同时具有更高的拉伸强度和更高的电导率。PVC-APIm / 10%PEK-C / 166%PA膜的低面积膨胀率为45%,在180°C下的电导率为0.132 S cm -1,在室温下的拉伸强度为11.8 MPa。该膜的单电池性能证明了用于HT-PEMFC的PVC-APIm / x%PEK-C / PA膜的技术可行性。