当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Complementary Metal-Oxide-Semiconductor Compatible Deposition of Nanoscale Transition-Metal Nitride Thin Films for Plasmonic Applications.
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2020-09-22 , DOI: 10.1021/acsami.0c10570 Ryan Bower 1 , Daniel A L Loch 2 , Ecaterina Ware 1 , Andrey Berenov 1 , Bin Zou 1 , Papken Eh Hovsepian 2 , Arutiun P Ehiasarian 2 , Peter K Petrov 1
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2020-09-22 , DOI: 10.1021/acsami.0c10570 Ryan Bower 1 , Daniel A L Loch 2 , Ecaterina Ware 1 , Andrey Berenov 1 , Bin Zou 1 , Papken Eh Hovsepian 2 , Arutiun P Ehiasarian 2 , Peter K Petrov 1
Affiliation
Transition-metal nitrides have received significant interest for use within plasmonic and optoelectronic devices because of their tunability and environmental stability. However, the deposition temperature remains a significant barrier to widespread adoption through the integration of transition-metal nitrides as plasmonic materials within complementary metal–oxide–semiconductor (CMOS) fabrication processes. Binary, ternary, and layered plasmonic transition-metal nitride thin films based on titanium and niobium nitride are deposited using high-power impulse magnetron sputtering (HIPIMS) technology. The increased plasma densities achieved in the HIPIMS process allow thin films with high plasmonic quality to be deposited at CMOS-compatible temperatures of less than 300 °C. Thin films are deposited on a range of industrially relevant substrates and display-tunable plasma frequencies in the ultraviolet to visible spectral ranges. Strain-mediated tunability is discovered in layered films compared to that in ternary films. The thin film quality, combined with the scalability of the deposition process, indicates that HIPIMS deposition of nitride films is an industrially viable technique and can pave the way toward the fabrication of next-generation plasmonic and optoelectronic devices.
中文翻译:
用于等离子应用的纳米级过渡金属氮化物薄膜的互补金属-氧化物-半导体兼容沉积。
过渡金属氮化物因其可调谐性和环境稳定性而在等离子和光电器件中得到了广泛的关注。但是,沉积温度仍然是将过渡金属氮化物作为等离子材料集成在互补金属-氧化物-半导体(CMOS)制造工艺中的广泛应用的主要障碍。使用高功率脉冲磁控溅射(HIPIMS)技术沉积基于钛和氮化铌的二元,三元和层状等离子过渡金属氮化物薄膜。通过HIPIMS工艺获得的增加的等离子体密度,可以在低于300°C的CMOS兼容温度下沉积具有高等离子体质量的薄膜。薄膜沉积在一系列工业相关的基材上,并在紫外到可见光谱范围内显示可调的等离子体频率。与三元膜相比,在层状膜中发现了应变介导的可调性。薄膜质量与沉积工艺的可扩展性相结合,表明氮化物膜的HIPIMS沉积是一种工业可行的技术,可以为下一代等离子和光电器件的制造铺平道路。
更新日期:2020-10-07
中文翻译:
用于等离子应用的纳米级过渡金属氮化物薄膜的互补金属-氧化物-半导体兼容沉积。
过渡金属氮化物因其可调谐性和环境稳定性而在等离子和光电器件中得到了广泛的关注。但是,沉积温度仍然是将过渡金属氮化物作为等离子材料集成在互补金属-氧化物-半导体(CMOS)制造工艺中的广泛应用的主要障碍。使用高功率脉冲磁控溅射(HIPIMS)技术沉积基于钛和氮化铌的二元,三元和层状等离子过渡金属氮化物薄膜。通过HIPIMS工艺获得的增加的等离子体密度,可以在低于300°C的CMOS兼容温度下沉积具有高等离子体质量的薄膜。薄膜沉积在一系列工业相关的基材上,并在紫外到可见光谱范围内显示可调的等离子体频率。与三元膜相比,在层状膜中发现了应变介导的可调性。薄膜质量与沉积工艺的可扩展性相结合,表明氮化物膜的HIPIMS沉积是一种工业可行的技术,可以为下一代等离子和光电器件的制造铺平道路。