当前位置: X-MOL 学术Numer. Algor. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
用于ML估计位置,散布矩阵和Student t分布的自由度的EM算法的替代方法
Numerical Algorithms ( IF 1.7 ) Pub Date : 2020-09-23 , DOI: 10.1007/s11075-020-00959-w
Marzieh Hasannasab , Johannes Hertrich , Friederike Laus , Gabriele Steidl

在本文中,我们考虑了多元学生t分布的自由度参数ν,位置参数μ和散射矩阵Σ的最大似然估计。特别地,我们对估计确定相应概率密度函数的尾部的自由度参数ν感兴趣,并且迄今为止在文献中很少对其进行详细考虑。我们证明在某些假设下,存在负对数似然函数的极小值,在这种情况下,我们必须特别注意\(\ nu \ rightarrow \ infty \)的情况,为此,学生t分布接近高斯分布。作为经典EM算法的替代方法,我们提出了三种其他不能解释为EM算法的算法。对于固定ν,第一种算法是文献中已知的加速EM算法。但是,由于我们不固定ν,因此无法将标准收敛结果应用于EM算法。其他两个算法在ν的迭代步骤中与此算法不同。我们展示了目标函数对于ν的不同更新的行为并针对所有三种算法证明其在每个迭代步骤中都会减少。我们通过数值模拟比较了算法和一些加速版本,并应用其中一种估计由Student t噪声破坏的图像的自由度参数。





"点击查看英文标题和摘要"

更新日期:2020-09-23
down
wechat
bug