当前位置:
X-MOL 学术
›
J. Wind Energy Ind. Aerod.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Effects of plan dimensions on gust wind loads for high-rise buildings
Journal of Wind Engineering and Industrial Aerodynamics ( IF 4.2 ) Pub Date : 2019-11-01 , DOI: 10.1016/j.jweia.2019.103980 Yi Liu , Gregory A. Kopp , Shui-fu Chen
Journal of Wind Engineering and Industrial Aerodynamics ( IF 4.2 ) Pub Date : 2019-11-01 , DOI: 10.1016/j.jweia.2019.103980 Yi Liu , Gregory A. Kopp , Shui-fu Chen
Abstract Scale-model wind tunnel pressure measurements were carried out for rectangular-plan high-rise buildings with plan ratios ranging from 0.11 to 9. Mean, fluctuating, and peak wall pressure coefficient distributions and area-averages were investigated. In addition, comparisons with the ASCE 7–16 provisions for the Main Wind Force-Resisting System (MWFRS) were made. The results show that the plan ratio has significant effects on pressure coefficients on the leeward and side walls for plan ratios less than about 4. The largest mean base shear coefficient occurs for plan ratio of about 0.67, with large values in the range of 0.5–1, but decreasing for larger or smaller plan ratios. ASCE 7–16 mean load coefficients tend to underestimate the data, particularly because of the values on leeward walls. ASCE 7–16 also underestimates the peak load coefficients due to the value of the gust effect factor. For rigid buildings, ASCE 7–16 has a gust effect factor of 0.85, while measurements indicate that it is closer to 1 for plan ratios between 0.67 and 2. Thus, the overall mismatch between the ASCE 7–16 MWFRS loads and the measured data is due to both the mean pressure coefficients and the gust effect factor. For plan ratios below 0.67, the decrease in plan ratio tends to be favorable for the MWFRS load coefficients; while for plan ratios above 4, the effects of plan ratios on the MWFRS load coefficients are limited.
中文翻译:
高层建筑平面尺寸对阵风荷载的影响
摘要 对矩形平面高层建筑进行了比例模型风洞压力测量,平面比范围为0.11至9。研究了平均、波动和峰值壁面压力系数分布和面积平均值。此外,还与 ASCE 7-16 中关于主抗风系统 (MWFRS) 的规定进行了比较。结果表明,当平面比小于 4 时,平面比对背风和侧壁的压力系数有显着影响。最大平均基础剪切系数出现在平面比约为 0.67 时,较大的值在 0.5– 1,但随着更大或更小的计划比率而下降。ASCE 7-16 平均载荷系数往往会低估数据,特别是因为背风墙上的值。由于阵风效应系数的值,ASCE 7-16 也低估了峰值载荷系数。对于刚性建筑,ASCE 7-16 的阵风效应系数为 0.85,而测量表明,对于 0.67 和 2 之间的平面比率,它更接近于 1。因此,ASCE 7-16 MWFRS 载荷与测量数据之间的总体不匹配是由于平均压力系数和阵风效应因子。对于低于 0.67 的计划比率,计划比率的降低往往有利于 MWFRS 负载系数;而对于高于 4 的计划比率,计划比率对 MWFRS 负载系数的影响是有限的。ASCE 7-16 MWFRS 负载与测量数据之间的总体不匹配是由于平均压力系数和阵风效应因子造成的。对于低于 0.67 的计划比率,计划比率的降低往往有利于 MWFRS 负载系数;而对于高于 4 的计划比率,计划比率对 MWFRS 负载系数的影响是有限的。ASCE 7-16 MWFRS 负载与测量数据之间的总体不匹配是由于平均压力系数和阵风效应因子造成的。对于低于 0.67 的计划比率,计划比率的降低往往有利于 MWFRS 负载系数;而对于高于 4 的计划比率,计划比率对 MWFRS 负载系数的影响是有限的。
更新日期:2019-11-01
中文翻译:
高层建筑平面尺寸对阵风荷载的影响
摘要 对矩形平面高层建筑进行了比例模型风洞压力测量,平面比范围为0.11至9。研究了平均、波动和峰值壁面压力系数分布和面积平均值。此外,还与 ASCE 7-16 中关于主抗风系统 (MWFRS) 的规定进行了比较。结果表明,当平面比小于 4 时,平面比对背风和侧壁的压力系数有显着影响。最大平均基础剪切系数出现在平面比约为 0.67 时,较大的值在 0.5– 1,但随着更大或更小的计划比率而下降。ASCE 7-16 平均载荷系数往往会低估数据,特别是因为背风墙上的值。由于阵风效应系数的值,ASCE 7-16 也低估了峰值载荷系数。对于刚性建筑,ASCE 7-16 的阵风效应系数为 0.85,而测量表明,对于 0.67 和 2 之间的平面比率,它更接近于 1。因此,ASCE 7-16 MWFRS 载荷与测量数据之间的总体不匹配是由于平均压力系数和阵风效应因子。对于低于 0.67 的计划比率,计划比率的降低往往有利于 MWFRS 负载系数;而对于高于 4 的计划比率,计划比率对 MWFRS 负载系数的影响是有限的。ASCE 7-16 MWFRS 负载与测量数据之间的总体不匹配是由于平均压力系数和阵风效应因子造成的。对于低于 0.67 的计划比率,计划比率的降低往往有利于 MWFRS 负载系数;而对于高于 4 的计划比率,计划比率对 MWFRS 负载系数的影响是有限的。ASCE 7-16 MWFRS 负载与测量数据之间的总体不匹配是由于平均压力系数和阵风效应因子造成的。对于低于 0.67 的计划比率,计划比率的降低往往有利于 MWFRS 负载系数;而对于高于 4 的计划比率,计划比率对 MWFRS 负载系数的影响是有限的。