当前位置: X-MOL 学术Transp. Plan. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Pareto-improving hybrid rationing and pricing policy with multiclass network equilibria
Transportation Planning and Technology ( IF 1.3 ) Pub Date : 2017-11-27 , DOI: 10.1080/03081060.2018.1407530
Zhaoming Chu 1 , Hui Chen 2, 3 , Lin Cheng 4 , Senlai Zhu 5 , Chao Sun 4
Affiliation  

ABSTRACT This paper extends the work on Pareto-improving hybrid rationing and pricing policy for general road networks by considering heterogeneous users with different values of time. Mathematical programming models are proposed to find a multiclass Pareto-improving pure road space rationing scheme (MPI-PR) and multiclass hybrid rationing and pricing schemes (MHPI and MHPI-S). A numerical example with a multimodal network is provided for comparing both the efficiency and equity of the three proposed policies. We discover that MHPI-S can achieve the largest reduction in total system delay, MHPI can induce the least spatial inequity and MHPI-S is a progressive policy which is appealing to policy makers. Furthermore, numerical results reveal that different classes of users react differently to the same hybrid policies and multiclass Pareto-improving hybrid schemes yield less delay reduction when compared to their single-class counterparts.

中文翻译:

具有多类网络均衡的帕累托改进混合配给和定价策略

摘要 本文通过考虑具有不同时间价值的异构用户,扩展了一般道路网络的帕累托改进混合配给和定价政策的工作。提出了数学规划模型来寻找多类帕累托改进纯道路空间配给方案(MPI-PR)和多类混合配给和定价方案(MHPI 和 MHPI-S)。提供了一个具有多模式网络的数值示例,用于比较三种拟议政策的效率和公平性。我们发现 MHPI-S 可以最大程度地减少总系统延迟,MHPI 可以引起最少的空间不公平,并且 MHPI-S 是一种对决策者有吸引力的渐进政策。此外,
更新日期:2017-11-27
down
wechat
bug