当前位置:
X-MOL 学术
›
J. Mater. Chem. A
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Boosting the interface reaction activity and kinetics of cobalt molybdate by phosphating treatment for aqueous zinc-ion batteries with high energy density and long cycle life
Journal of Materials Chemistry A ( IF 10.7 ) Pub Date : 2020-09-18 , DOI: 10.1039/d0ta07746a Yuenian Shen 1, 2, 3, 4, 5 , Zhihao Li 1, 2, 3, 4, 5 , Zhe Cui 1, 2, 3, 4, 5 , Ke Zhang 4, 5, 6, 7 , Rujia Zou 1, 2, 3, 4, 5 , Fang Yang 4, 5, 6, 7 , Kaibing Xu 1, 2, 3, 4, 5
Journal of Materials Chemistry A ( IF 10.7 ) Pub Date : 2020-09-18 , DOI: 10.1039/d0ta07746a Yuenian Shen 1, 2, 3, 4, 5 , Zhihao Li 1, 2, 3, 4, 5 , Zhe Cui 1, 2, 3, 4, 5 , Ke Zhang 4, 5, 6, 7 , Rujia Zou 1, 2, 3, 4, 5 , Fang Yang 4, 5, 6, 7 , Kaibing Xu 1, 2, 3, 4, 5
Affiliation
As one of the most reliable power sources for portable and wearable electronics, aqueous zinc-ion batteries fully meet the requirement of high safety, while their energy storage ability is still limited by the lack of high-performance cathode materials. In this study, the poor electrical conductivity and sluggish interface reaction of cobalt molybdate (CoMoO4) nanosheets are well addressed by one-step phosphating treatment (denoted as P-CoMoO4), which serve as an advanced cathode material for rechargeable zinc-ion batteries. Primarily, the electronic structures are finely manipulated using enriched oxygen vacancies, therefore improving the electronic conductivity and reaction activity. Moreover, the modification of surface phosphate ions can reduce the required activation energy for redox reactions and consequently increase the reaction kinetics. Additionally, abundant metallic CoP nanoparticles are uniformly distributed in the matrix of CoMoO4 nanosheets, boosting the exposure of active sites and interface reactions. As expected, the optimized P-CoMoO4 electrode shows a superior specific capacity (431.4 mA h g−1 at 10 A g−1) and rate performance (43.8% capacity retention at 50 A g−1) relative to pristine CoMoO4. Furthermore, the assembled P-CoMoO4//Zn battery exhibits a remarkable energy density of 679.4 W h kg−1 at 8.6 kW kg−1, and an ultra-long life span (over 80% retention of the initial capacity after 12 000 cycles at 60 mV s−1). Hence, this work may offer a preferable option for high-performance cathode materials for aqueous zinc-ion batteries.
中文翻译:
通过对高能量密度和长循环寿命的水性锌离子电池进行磷化处理,提高钼酸钴的界面反应活性和动力学
作为便携式和可穿戴电子设备最可靠的电源之一,水性锌离子电池完全可以满足高安全性的要求,而其能量存储能力仍然受到缺乏高性能阴极材料的限制。在这项研究中,钼酸钴(CoMoO 4)纳米片的不良电导率和缓慢的界面反应可通过一步磷化处理(称为P-CoMoO 4)很好地解决。),用作可充电锌离子电池的高级阴极材料。首先,使用富氧空位对电子结构进行精细操作,因此提高了电子电导率和反应活性。此外,表面磷酸根离子的改性可以减少氧化还原反应所需的活化能,从而提高反应动力学。此外,大量的金属CoP纳米颗粒均匀分布在CoMoO 4纳米片的基质中,从而促进了活性位点和界面反应的暴露。如所预期的,优化的P-的CoMoO 4电极示出了优异的比容量(431.4毫安汞柱-1以10 A G -1)和速率性能(相对于原始CoMoO 4而言,在50 A g -1时的容量保持率为43.8%)。此外,组装后的P-CoMoO 4 // Zn电池在8.6 kW kg -1时表现出出色的能量密度,为679.4 W h kg -1,寿命超长(在12 000后保持初始容量的80%以上)周期在60 mV s -1)。因此,这项工作可能为水性锌离子电池的高性能阴极材料提供一个更好的选择。
更新日期:2020-10-06
中文翻译:
通过对高能量密度和长循环寿命的水性锌离子电池进行磷化处理,提高钼酸钴的界面反应活性和动力学
作为便携式和可穿戴电子设备最可靠的电源之一,水性锌离子电池完全可以满足高安全性的要求,而其能量存储能力仍然受到缺乏高性能阴极材料的限制。在这项研究中,钼酸钴(CoMoO 4)纳米片的不良电导率和缓慢的界面反应可通过一步磷化处理(称为P-CoMoO 4)很好地解决。),用作可充电锌离子电池的高级阴极材料。首先,使用富氧空位对电子结构进行精细操作,因此提高了电子电导率和反应活性。此外,表面磷酸根离子的改性可以减少氧化还原反应所需的活化能,从而提高反应动力学。此外,大量的金属CoP纳米颗粒均匀分布在CoMoO 4纳米片的基质中,从而促进了活性位点和界面反应的暴露。如所预期的,优化的P-的CoMoO 4电极示出了优异的比容量(431.4毫安汞柱-1以10 A G -1)和速率性能(相对于原始CoMoO 4而言,在50 A g -1时的容量保持率为43.8%)。此外,组装后的P-CoMoO 4 // Zn电池在8.6 kW kg -1时表现出出色的能量密度,为679.4 W h kg -1,寿命超长(在12 000后保持初始容量的80%以上)周期在60 mV s -1)。因此,这项工作可能为水性锌离子电池的高性能阴极材料提供一个更好的选择。