当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
In Situ Fabrication of Uniform Co-MOF Shell Coordinated with CoNiO2 to Enhance the Energy Storage Capability of NiCo-LDH via Vapor-Phase Growth.
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2020-09-18 , DOI: 10.1021/acsami.0c12759 Lihua Wang 1 , Dedong Jia 1 , Lijun Yue 1 , Kun Zheng 1 , Aitang Zhang 1 , Qiang Jia 1 , Jingquan Liu 1
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2020-09-18 , DOI: 10.1021/acsami.0c12759 Lihua Wang 1 , Dedong Jia 1 , Lijun Yue 1 , Kun Zheng 1 , Aitang Zhang 1 , Qiang Jia 1 , Jingquan Liu 1
Affiliation
NiCo-layered double hydroxide (LDH) has attracted increasing attention in recent years for application in supercapacitors (SCs) owing to its high redox activity and intercalating capability. However, the pristine NiCo-LDH is unable to reach theoretical specific capacitance and satisfying rate capability due to the limited electroactive species and a low ion diffusion rate. Here, we demonstrate novel vertically aligned nanosheet arrays of cobalt metal–organic framework (Co-MOF)@CoNiO2 core–shell composites constructed by the in situ grown Co-MOF shell with a uniform and controlled thickness on the CoNiO2 core via a vapor-phase approach. Owing to the intimate contact and synergistic effect between the Co-MOF shell and the CoNiO2 core, the as-synthesized Co-MOF@CoNiO2 displays a high specific capacitance of about 571 F g–1, which is significantly higher than the pristine NiCo-LDH electrode (380 F g–1). Moreover, the capacitive properties of Co-MOF@CoNiO2 can be further boosted to 757.2 F g–1 after cyclic voltammetry oxidation. The easy preparation and high electrochemical performance of the Co-MOF@CoNiO2 composite make it a potential material for SC application. These findings may inspire the exploration and construction of other MOF shell coating metal oxide from various nanostructured LDHs for varied applications. In addition, the as-assembled EO-Co-MOF@CoNiO2/carbon cloth (CC)//activated carbon (AC) device can achieve a high capacitance of 87.67 F g–1. Meanwhile, the asymmetric supercapacitor (ASC) device exhibits a high energy density of 27.4 Wh kg–1 at a power density of 750 W kg–1.
中文翻译:
原位制造与CoNiO2配合使用的均匀Co-MOF外壳,以通过气相生长增强NiCo-LDH的储能能力。
近年来,NiCo层状双氢氧化物(LDH)由于其高的氧化还原活性和嵌入能力而在超级电容器(SCs)中的应用引起了越来越多的关注。然而,由于有限的电活性物质和低的离子扩散速率,原始的NiCo-LDH无法达到理论比电容和令人满意的速率能力。在这里,我们演示了钴金属-有机骨架(Co-MOF)@CoNiO 2核-壳复合材料的新型垂直排列纳米片阵列,该复合材料是通过原位生长的Co-MOF壳通过CoNiO 2核在CoNiO 2核上的厚度均匀且可控地构建气相法。由于Co-MOF外壳和CoNiO 2之间的紧密接触和协同作用作为核心,合成后的Co-MOF @ CoNiO 2显示出约571 F g –1的高比电容,该电容明显高于原始的NiCo-LDH电极(380 F g –1)。此外,在循环伏安法氧化后,Co-MOF @ CoNiO 2的电容特性可以进一步提高到757.2 F g –1。Co-MOF @ CoNiO 2复合材料的易于制备和高电化学性能使其成为SC应用的潜在材料。这些发现可能会启发人们探索和构建来自各种纳米结构LDH的其他MOF外壳涂层金属氧化物,以用于各种应用。此外,组装后的EO-Co-MOF @ CoNiO 2/碳布(CC)//活性炭(AC)装置可实现87.67 F g –1的高电容。同时,非对称超级电容器(ASC)器件在750 W kg –1的功率密度下表现出27.4 Wh kg –1的高能量密度。
更新日期:2020-09-18
中文翻译:
原位制造与CoNiO2配合使用的均匀Co-MOF外壳,以通过气相生长增强NiCo-LDH的储能能力。
近年来,NiCo层状双氢氧化物(LDH)由于其高的氧化还原活性和嵌入能力而在超级电容器(SCs)中的应用引起了越来越多的关注。然而,由于有限的电活性物质和低的离子扩散速率,原始的NiCo-LDH无法达到理论比电容和令人满意的速率能力。在这里,我们演示了钴金属-有机骨架(Co-MOF)@CoNiO 2核-壳复合材料的新型垂直排列纳米片阵列,该复合材料是通过原位生长的Co-MOF壳通过CoNiO 2核在CoNiO 2核上的厚度均匀且可控地构建气相法。由于Co-MOF外壳和CoNiO 2之间的紧密接触和协同作用作为核心,合成后的Co-MOF @ CoNiO 2显示出约571 F g –1的高比电容,该电容明显高于原始的NiCo-LDH电极(380 F g –1)。此外,在循环伏安法氧化后,Co-MOF @ CoNiO 2的电容特性可以进一步提高到757.2 F g –1。Co-MOF @ CoNiO 2复合材料的易于制备和高电化学性能使其成为SC应用的潜在材料。这些发现可能会启发人们探索和构建来自各种纳米结构LDH的其他MOF外壳涂层金属氧化物,以用于各种应用。此外,组装后的EO-Co-MOF @ CoNiO 2/碳布(CC)//活性炭(AC)装置可实现87.67 F g –1的高电容。同时,非对称超级电容器(ASC)器件在750 W kg –1的功率密度下表现出27.4 Wh kg –1的高能量密度。