当前位置:
X-MOL 学术
›
Chem. Asian J.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Role of vacancies in photocatalysis: a review of recent progress.
Chemistry - An Asian Journal ( IF 3.5 ) Pub Date : 2020-09-15 , DOI: 10.1002/asia.202000889 Minhua Ai 1, 2 , Jing-Wen Zhang 1, 2 , Yi-Wei Wu 3 , Lun Pan 1, 2 , Chengxiang Shi 1, 2 , Ji-Jun Zou 1, 2
Chemistry - An Asian Journal ( IF 3.5 ) Pub Date : 2020-09-15 , DOI: 10.1002/asia.202000889 Minhua Ai 1, 2 , Jing-Wen Zhang 1, 2 , Yi-Wei Wu 3 , Lun Pan 1, 2 , Chengxiang Shi 1, 2 , Ji-Jun Zou 1, 2
Affiliation
Photocatalysis via direct solar‐to‐chemical energy conversion is an intriguing approach for alleviating the pressure of high energy consumption caused by social development. However, photocatalytic efficiency is greatly restricted by unsatisfactory light‐harvesting capacity, high carrier recombination rates, and sluggish reaction kinetics. Indeed, vacancy engineering is an attractive strategy to regulate photocatalytic reaction performance to maximize the utilization and storage of solar energy. In this review, we summarize recent progress about the important roles of vacancy defects on solar‐driven photocatalytic applications. The current advanced characterization techniques, especially for in situ/operando techniques, are first presented for elucidating the structure‐performance relationships of defective semiconductors in photocatalysis. Subsequently, the crucial roles of vacancies in enhancing photocatalytic performance are highlighted from three important processes: light absorption, carrier separation and migration, and surface reaction. Finally, based on the above understanding, perspectives and opportunities about defective materials are considered for various photocatalytic applications.
中文翻译:
空位在光催化中的作用:近期进展综述。
通过直接的太阳能转化为化学能的光催化是减轻社会发展带来的高能耗压力的一种有趣的方法。但是,光收集效率,令人满意的载流子重组率和反应动力学低下都严重限制了光催化效率。实际上,空缺工程是调节光催化反应性能以最大化利用和存储太阳能的有吸引力的策略。在这篇综述中,我们总结了空位缺陷在太阳能驱动的光催化应用中的重要作用的最新进展。首先介绍了当前的高级表征技术,特别是用于原位/操作数技术,以阐明光催化中有缺陷的半导体的结构-性能关系。随后,空位在增强光催化性能中的关键作用从三个重要过程中得到了强调:光吸收,载流子分离和迁移以及表面反应。最终,基于以上理解,考虑到关于缺陷材料的观点和机会用于各种光催化应用。
更新日期:2020-11-17
中文翻译:
空位在光催化中的作用:近期进展综述。
通过直接的太阳能转化为化学能的光催化是减轻社会发展带来的高能耗压力的一种有趣的方法。但是,光收集效率,令人满意的载流子重组率和反应动力学低下都严重限制了光催化效率。实际上,空缺工程是调节光催化反应性能以最大化利用和存储太阳能的有吸引力的策略。在这篇综述中,我们总结了空位缺陷在太阳能驱动的光催化应用中的重要作用的最新进展。首先介绍了当前的高级表征技术,特别是用于原位/操作数技术,以阐明光催化中有缺陷的半导体的结构-性能关系。随后,空位在增强光催化性能中的关键作用从三个重要过程中得到了强调:光吸收,载流子分离和迁移以及表面反应。最终,基于以上理解,考虑到关于缺陷材料的观点和机会用于各种光催化应用。